【題目】已知:A(2,4),B(1,1),C(5,2).
(1)在如圖所示的平面直角坐標系中描出各點,畫出三角形ABC;
(2)將三角形ABC向左平移6個單位,再向下平移3個單位,請在圖中作出平移后的三角形A1B1C1;
(3)寫出三角形各點A1、B1、C1的坐標;
【答案】(1)見解析;(2)見解析;(3)點A1的坐標為(-4,1),點B1的坐標為(-5,-2),點C1的坐標為(-1,-1)
【解析】
(1)在平面直角坐標系中找到點A、B、C,然后順次連接即可;
(2)將點A、B、C向左平移6個單位,再向下平移3個單位得到A1、B1、C1,然后順次連接即可;
(3)根據(jù)平面直角坐標系即可寫出各點的坐標.
解:(1)在平面直角坐標系中找到點A、B、C,然后順次連接,如下圖所示:△ABC即為所求;
(2)將點A、B、C向左平移6個單位,再向下平移3個單位得到A1、B1、C1,然后順次連接,如圖所示:△A1B1C1即為所求;
(3)由平面直角坐標系可知:點A1的坐標為(-4,1),點B1的坐標為(-5,-2),點C1的坐標為(-1,-1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3;……,按此作法進行下去,則點An的坐標為(_______).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,P是∠BAC內的一點,PE⊥AB,PF⊥AC,垂足分別為點E,F,AE=AF.求證:
(1)PE=PF;
(2)點P在∠BAC的平分線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線分別交AB、AC于點D、E,則以下AE與CE的數(shù)量關系正確的是( 。
A.AE=CEB.AE=CEC.AE=CED.AE=2CE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校體育組對本校九年級全體同學體育測試情況進行調查,他們隨機抽查部分同學體育測試成績(由高到低分四個等級),根據(jù)調查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)該校體育組共抽查了多少名同學的體育測試成績?扇形統(tǒng)計圖中B級所占的百分比b等于多少?
(2)補全條形統(tǒng)計圖;
(3)若該校九年級共有200名同學,請估計該校九年級同學體育測試達標(測試成績C級以上,含C級)約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),下列四個說法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=.其中說法正確的結論有_______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班要購買6副乒乓球拍和盒()乒乓球,甲、乙兩家商店定價都為乒乓球拍每副50元,乒乓球每盒10元,現(xiàn)兩家商店都搞促銷活動,甲店優(yōu)惠方案是:每買一副乒乓球拍送一盒乒乓球,乙店優(yōu)惠方案是:按定價的9折出售.
(1)用含的代數(shù)式表示:該班在甲店購買時需付款____________元;在乙店購買時需付款____________元,(所填式子需化為最簡形式).
(2)當時,到哪家店子購買比較合算?說明理由.
(3)若要你去甲、乙兩家商店購買6副球拍和10盒乒乓球,你最少要付多少錢?并寫出你的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=60°,∠C=70°,求∠DAE、∠BOA的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com