23、已知:△ABC的高AD所在直線與高BE所在直線相交于點F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點F作FG∥BC,交直線AB于點G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點F作FG∥BC,交直線AB于點G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
FG=DC+AD
.(只寫答案)
分析:(1)本題可采用截取的方法,先證明AF=GF,只要再證明DF=CD即可,這只要證明這兩條線段所在的三角形全等即可;
(2)結(jié)合(1)及圖形我們可猜測出:FG=DC+AD;證法同(1),先證△FDB≌△CDA,得DC=DF,進而可得出FG=DC+AD的結(jié)論.
解答:(1)證明:∵∠ADB=90°,∠ABC=45°,
∴∠BAD=∠ABC=45°;
∴AD=BD;
∵∠BEC=90°,∴∠CBE+∠C=90°;
∵∠DAC+∠C=90°,∴∠CBE=∠DAC;
∵∠FDB=∠CDA=90°,
∴△FDB≌△CDA;
∴DF=DC;
∵GF∥BD,
∴∠AGF=∠ABC;
∴∠AGF=∠BAD;
∴FA=FG;
∴FG+DC=FA+DF=AD.

(2)FG=DC+AD.
證法同(1).
點評:此題考查的是等腰直角三角形以及全等三角形的判定和性質(zhì);通過全等三角形證得CD=DF是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:△ABC的高AD所在直線與高BE所在直線相交于點F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點F作FG∥BC,交直線AB于點G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點F作FG∥BC,交直線AB于點G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
 
;
(3)在(2)的條件下,若AG=5
2
,DC=3,將一個45°角的頂點與點B重合并繞點B旋轉(zhuǎn),這個角的兩邊分別交線段FG于M、N兩點(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點,若NG=
3
2
,求線段PQ的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:△ABC的高AD所在直線與高BE所在直線相交于點F,過點F作FG∥BC,交直線AB于點G.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°.
求證:①△BDF≌△ADC;
②FG+DC=AD;
(2)如圖2,若∠ABC=135°,直接寫出FG、DC、AD之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源:黑龍江省中考真題 題型:解答題

已知:△ABC的高AD所在直線與高BE所在直線相交于點F。
(1)如圖(1),若△ABC為銳角三角形,且∠ABC=45°,過點F作FG∥BC,交AB于點G,求證:FG+DC=AD;
(2)如圖(2),若∠ABC=135°,過點F作FG∥BC,交AB的延長線于點G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是____;
(3)在(2)的條件下,若,DC=3,將一個45°角的頂點與點B重合并繞點B旋轉(zhuǎn),這個角的兩邊分別交線段FG于M、N兩點(如圖(3)),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點,若,求線段PQ的長。

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(12)(解析版) 題型:解答題

(2009•哈爾濱)已知:△ABC的高AD所在直線與高BE所在直線相交于點F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點F作FG∥BC,交直線AB于點G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點F作FG∥BC,交直線AB于點G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是______;
(3)在(2)的條件下,若AG=,DC=3,將一個45°角的頂點與點B重合并繞點B旋轉(zhuǎn),這個角的兩邊分別交線段FG于M、N兩點(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點,若NG=,求線段PQ的長.

查看答案和解析>>

同步練習冊答案