【題目】某區(qū)教研部門對本區(qū)初二年級的學(xué)生進(jìn)行了一次隨機(jī)抽樣問卷調(diào)查,其中有這樣一個(gè)問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )
A.從不 B.很少 C.有時(shí) D.常常 E.總是
答題的學(xué)生在這五個(gè)選項(xiàng)中只能選擇一項(xiàng).下面是根據(jù)學(xué)生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學(xué)生參加了本次問卷調(diào)查;
(2)請把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“總是”的圓心角為 .(精確到度)
【答案】(1)3200(2)答案見解析(3)151°
【解析】試題分析:(1)用“從不”的人數(shù)除以“從不”人數(shù)所占的百分比即可得總?cè)藬?shù);(2)用總?cè)藬?shù)減去“從不”、“很少”、“常常”、“總是”的人數(shù)即可得“有時(shí)”的人數(shù),在條形統(tǒng)計(jì)圖上畫出即可;(3)用“總是”的人數(shù)除以總?cè)藬?shù)即可得“總是”所占的百分比.
試題解析:(1)96÷3%=3200(人);(2)“有時(shí)”的人數(shù)為3200-96-320-736-1344=704(人),圖見下;(3)×100%=42%.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
①(-8)+6-(-13)+(-6);
②
③
④5(3a2b-ab2+c)-4(2c-ab2+3a2b)
⑤3x2 -[7x - 2(4x + 2) +2x2]-x2
⑥-14-÷3×[3-(-3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開挖后甲、乙兩隊(duì)所挖河渠長度相等時(shí),x=4.其中一定正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的證明過程,指出其錯(cuò)誤.(在錯(cuò)誤部分下方劃線)已知△ABC,求證:∠A+∠B+∠C=180°
(1)證明:過A作DE∥BC,且使∠1=∠C
∵DE∥BC(作圖)
∴∠2=∠B(內(nèi)錯(cuò)角相等兩直線平行)
∵∠1=∠C(作圖)
∴∠B+∠C+∠3=∠2+∠1+∠3(等量代換)
∠2+∠l+∠3=180°(周角的定義)
即∠BAC+∠B+∠C=180°(等量代換)
(2)類比探究:請同學(xué)們參考圖2,模仿(1)的解決過程,避免(1)中的錯(cuò)誤,試說明求證:∠A+∠B+∠C=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b-2).
(1)直接寫出點(diǎn)C1的坐標(biāo);
(2)在圖中畫出△A1B1C1;
(3)求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,∠ABO=90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)C為AO的中點(diǎn),連接OD、CD.若S△OBD=3,則S△OCD為( )
A.3B.4C.D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com