如圖,點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時針方向旋轉(zhuǎn)180°得到△BDE,則△EBC的面積=   
【答案】分析:根據(jù)點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時針方向旋轉(zhuǎn)180°得到△BDE,得出DG=DE=2,以及BE=5,即可得出△EBG的面積,進(jìn)而得出答案.
解答:解:∵點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GC=4,
∴DE=2,
∵將△ADG繞點(diǎn)D順時針方向旋轉(zhuǎn)180°得到△BDE,
∴DG=DE=2,AG=BE=5,∵BG=3,
∴△BGE是直角三角形,
∴△BGE的面積為:×3×4=6,
∵∠BGE=90°,
∴∠BGC=90°,
∴△BGC的面積為:×3×4=6,
∴△EBC的面積為:12.
故答案為:12.
點(diǎn)評:此題主要考查了重心的性質(zhì)以及勾股定理的應(yīng)用,根據(jù)已知得出△BGE是直角三角形是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是△ABC外接圓
BC
的中點(diǎn),點(diǎn)D、E在邊AC上,使得AD=AB,BE=EC.證明:B、E、D、F四點(diǎn)共圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,點(diǎn)P是△ABC內(nèi)的一點(diǎn),有下列結(jié)論:①∠BPC>∠A;②∠BPC一定是鈍角;③∠BPC=∠A+∠ABP+∠ACP.其中正確的結(jié)論共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)O是△ABC內(nèi)任意一點(diǎn),G、D、E分別為AC、OA、OB的中點(diǎn),F(xiàn)為BC上一動點(diǎn),問四邊形GDEF能否為平行四邊形?若可以,指出F點(diǎn)位置,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花模擬)如圖,點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時針方向旋轉(zhuǎn)180°得到△BDE,則△EBC的面積=
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•天津)如圖,點(diǎn)I是△ABC的內(nèi)心,AI交BC邊于D,交△ABC的外接圓于點(diǎn)E.
求證:(1)IE=BE;
      (2)IE是AE和DE的比例中項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案