【題目】如圖,在正方形中,點(diǎn)是邊上的一動點(diǎn),點(diǎn)是上一點(diǎn),且,、相交于點(diǎn).
(1)求證:;
(2)求的度數(shù)
(3)若,求的值.
【答案】(1)見解析;(2)∠AGD=90°;(3).
【解析】
(1)直接利用正方形的性質(zhì)得到AD=DC,∠ADF=∠DCE,,結(jié)合全等三角形的判定方法得出答案;
(2)根據(jù)∠DAF=∠CDE和余角的性質(zhì)可得∠AGD=90°;
(3)利用全等三角形的判定和性質(zhì)得出△ABH≌△ADG(AAS),即可得出的值.
(1)證明:∵四邊形ABCD是正方形,
∴AD=DC,∠ADF=∠DCE=90°,
在△ADF和△DCE中
;
∴△ADF≌△DCE(SAS);
(2)解:由(1)得△ADF≌△DCE,
∴∠DAF=∠CDE,
∵∠ADG+∠CDE=90°,
∴∠ADG+∠DAF=90°,
∴∠AGD=90°,
(3)過點(diǎn)B作BH⊥AG于H
∵BH⊥AG,
∴∠BHA=90°,
∴∠BHA=∠AGD,
∵四邊形ABCD是正方形,
∴AB=AD=BC,∠BAD=90°,
∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,
∴∠ABH=∠DAG,
在△ABH和△ADG中
,
∴△ABH≌△ADG(AAS),
∴AH=DG,
∵BG=BC,BA=BC,
∴BA=BG,
∴AH=AG,
∴DG=AG,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.
已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:(A組:x<155;B組:155≤x<160;C組:160≤x<165;D組165≤x<170;E組:x≥170)
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組.
(2)樣本中,女生的身高在E組的人數(shù)有 人.
(3)已知該校共有男生400人,女生380人,請估計(jì)身高在160≤x<170之間的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線過點(diǎn),直線:與直線交于點(diǎn)B,與x軸交于點(diǎn)C.
(1)求k的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
① 當(dāng)b=4時(shí),直接寫出△OBC內(nèi)的整點(diǎn)個數(shù);
②若△OBC內(nèi)的整點(diǎn)個數(shù)恰有4個,結(jié)合圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足.
(1) , , ;
(2)若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則點(diǎn)與數(shù) 表示的點(diǎn)重合;
(3)點(diǎn)、、開始在數(shù)軸上運(yùn)動,若點(diǎn)以每秒1個單位長度的速度向左運(yùn)動,同時(shí),點(diǎn)和點(diǎn)分別以每秒2個單位長度和4個單位長度的速度向右運(yùn)動,假設(shè)秒鐘過后,若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,求、、的長(用含的式子表示);
(4)在(3)的條件下,的值是否隨著時(shí)間的變化而改變?若改變,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是反比例函數(shù)y=(k>0)圖象在第一象限上的一個動點(diǎn),過P作x軸的垂線,垂足為M,若△POM的面積為2.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)B坐標(biāo)為(0,﹣2),點(diǎn)A為直線y=x與反比例函數(shù)y=(k>0)圖象在第一象限上的交點(diǎn),連接AB,過A作AC⊥y軸于點(diǎn)C,若△ABC與△POM相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶商家計(jì)劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實(shí)際每天的銷售量與計(jì)劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計(jì)劃量的差值 | +4 | -3 | -5 | +14 | -8 | +21 | -6 |
(1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。
(3)該店實(shí)行每日計(jì)件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:數(shù)學(xué)課上,老師給出了如下問題:如圖甲,∠AOB=70°,OC平分∠AOB.
若∠BOD=20°,請你補(bǔ)全圖形,并求∠COD的度數(shù).
以下是小明的解答過程:
解:如圖乙,因?yàn)?/span>OC平分∠AOB,∠AOB=70°,
所以∠BOC=____∠AOB=________°.
因?yàn)?/span>∠BOD=20°,
所以∠COD= °.
小靜說:“我覺得這個題有兩種情況,小明考慮的是OD在∠AOB外部的情況,事實(shí)上,OD還可能在∠AOB的內(nèi)部” .
完成以下問題:
(1)請你將小明的解答過程補(bǔ)充完整;
(2)根據(jù)小靜的想法,請你在圖甲中畫出另一種情況對應(yīng)的圖形,求出此時(shí)∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四點(diǎn)A、B、C、D.
(1)用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形:
①畫直線AB.
②畫射線DC.
③延長線段DA至點(diǎn)E,使.(保留作圖痕跡)
④畫一點(diǎn)P,使點(diǎn)P既在直線AB上,又在線段CE上.
(2)在(1)中所畫圖形中,若cm,cm,點(diǎn)F為線段DE的中點(diǎn),求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運(yùn)物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(jì)(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(jì)(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余路線運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com