如圖是某居民小區(qū)的一塊長(zhǎng)為2a米,寬為b米的長(zhǎng)方形空地,為了美化環(huán)境,準(zhǔn)備在這個(gè)長(zhǎng)方形的四個(gè)頂點(diǎn)處修建一個(gè)半徑為a米的扇形花臺(tái),然后在花臺(tái)內(nèi)種花,其余種草.如果建造花臺(tái)及種花費(fèi)用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?

解:100×πa2+50(2ab-πa2)=50πa2+100ab(元).
分析:花臺(tái)面積為πa2平方米,所需資金為πa2×100.草地面積為(2ab-πa2)平方米,所需資金為(2ab-πa2)×50.共需資金為花臺(tái)所需資金+草地所需資金.
點(diǎn)評(píng):本題考查列代數(shù)式.先求面積再求所需資金的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這精英家教網(wǎng)塊空地建一個(gè)矩形停車(chē)場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長(zhǎng)度;
(2)求停車(chē)場(chǎng)DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請(qǐng)你在原圖中畫(huà)出花壇的草圖,求出它的半徑(不要求說(shuō)明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是某居民小區(qū)的一塊直角三角形空地ABC,其斜邊AB=100米,直角邊AC=80米.
(1)求另一條直角BC的長(zhǎng)度;
(2)現(xiàn)要利用這塊空地建一個(gè)矩形停車(chē)場(chǎng)DCFE,使得D在BC邊上,E、F分別是AB、AC邊的中點(diǎn).求矩形DCFE的面積;
(3)現(xiàn)要利用這塊空地建一個(gè)正方形停車(chē)場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的點(diǎn).求正方形DCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第24章《圓(下)》中考題集(12):24.2 圓的切線(解析版) 題型:解答題

如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個(gè)矩形停車(chē)場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長(zhǎng)度;
(2)求停車(chē)場(chǎng)DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請(qǐng)你在原圖中畫(huà)出花壇的草圖,求出它的半徑(不要求說(shuō)明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第27章《相似》中考題集(18):27.2 相似三角形(解析版) 題型:解答題

如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個(gè)矩形停車(chē)場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長(zhǎng)度;
(2)求停車(chē)場(chǎng)DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請(qǐng)你在原圖中畫(huà)出花壇的草圖,求出它的半徑(不要求說(shuō)明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2005•寧德)如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個(gè)矩形停車(chē)場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長(zhǎng)度;
(2)求停車(chē)場(chǎng)DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請(qǐng)你在原圖中畫(huà)出花壇的草圖,求出它的半徑(不要求說(shuō)明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

同步練習(xí)冊(cè)答案