在△ABC中,AB=15,AC=13,BC邊上高AD=12,試求△ABC周長。

 

【答案】

周長為42或32

【解析】本題考查的是勾股定理. 本題應(yīng)分兩種情況進(jìn)行討論:(1)當(dāng)△ABC為銳角三角形時,在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長求出,兩者相加即為BC的長,從而可將△ABC的周長求出;(2)當(dāng)△ABC為鈍角三角形時,在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長求出,兩者相減即為BC的長,從而可將△ABC的周長求出.

解:此題應(yīng)分兩種情況說明:

(1)當(dāng)△ABC為銳角三角形時,在Rt△ABD中,

BD= = =9,

在Rt△ACD中,

CD= = =5

∴BC=5+9=14

∴△ABC的周長為:15+13+14=42;

(2)當(dāng)△ABC為鈍角三角形時,

在Rt△ABD中,BD= = =9

在Rt△ACD中,CD== =5

∴BC=9-5=4

∴△ABC的周長為:15+13+4=32

∴當(dāng)△ABC為銳角三角形時,△ABC的周長為42;

當(dāng)△ABC為鈍角三角形時,△ABC的周長為32.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案