【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過點(diǎn)CCEADE,連接BE,在點(diǎn)D移動(dòng)的過程中,BE的取值范圍是____

【答案】 ﹣2≤BE<3

【解析】

由∠AEC=90°E在以AC為直徑的⊙M上(不含點(diǎn)C、可含點(diǎn)N),從而得BE最短時(shí),即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),在RtBCM中利用勾股定理求得BM=,從而得BE長(zhǎng)度的最小值BE′=BM-ME′=-2;由BE最長(zhǎng)時(shí)即EC重合,根據(jù)BC=3且點(diǎn)E與點(diǎn)C不重合,得BE<3,從而得出答案.

如圖,

由題意知,∠AEC=90°,
E在以AC為直徑的⊙M

上(不含點(diǎn)C、可含點(diǎn)N),
BE最短時(shí),即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),
AB=5,AC=4,
BC=3,CM=2,
BM===,
BE長(zhǎng)度的最小值BE′=BM-ME′=-2,
BE最長(zhǎng)時(shí),即EC重合,
BC=3,且點(diǎn)E與點(diǎn)C不重合,
BE<3,
所以-2≤BE<3.

故答案是:-2≤BE<3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貯水塔在工作期間,每小時(shí)的進(jìn)水量和出水量都是固定不變的.從凌晨4點(diǎn)到早8點(diǎn)只進(jìn)水不出水,8點(diǎn)到12點(diǎn)既進(jìn)水又出水,14點(diǎn)到次日凌晨只出水不進(jìn)水.下圖是某日水塔中貯水量y(立方米)與x(時(shí))的函數(shù)圖象.

1)求每小時(shí)的進(jìn)水量;

2)當(dāng)8x12時(shí),求yx之間的函數(shù)關(guān)系式;

3)從該日凌晨4點(diǎn)到次日凌晨,當(dāng)水塔中的貯水量不小于28立方米時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD,CE分別是ABC的兩邊上的高,過DDGBCG,分別交CEBA的延長(zhǎng)線于FH,求證:

(1)DG2BG·CG;

(2)BG·CGGF·GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,P1、P2是對(duì)角線BD的三等分點(diǎn).求證:四邊形APlCP2是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項(xiàng)工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當(dāng)天的枇杷售價(jià)每噸2000元,草莓售價(jià)每噸3000元,設(shè)安排其中x名工人采摘枇杷,兩種水果當(dāng)天全部售出,銷售總額達(dá)y元.

1)求yx之間的函數(shù)關(guān)系式;

2)若要求當(dāng)天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC=120°,OABC的外接圓,點(diǎn)P上的一個(gè)動(dòng)點(diǎn).

(1)求∠AOC的度數(shù);

(2)若⊙O的半徑為2,設(shè)點(diǎn)P到直線AC的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.\

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法不正確的是( 。

A. 某種彩票中獎(jiǎng)的概率是,買1000張?jiān)摲N彩票一定會(huì)中獎(jiǎng)

B. 了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查

C. 若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

D. 在一個(gè)裝有白球和綠球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的頂點(diǎn)坐標(biāo)分別是,,.過點(diǎn)的直線相交于點(diǎn).若的面積比為,則點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,tanA=,AB=13,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A'B'C,P為線段A′B′上的動(dòng)點(diǎn),以點(diǎn)P為圓心,PA′長(zhǎng)為半徑作⊙P,當(dāng)⊙P與△ABC的邊相切時(shí),⊙P的半徑為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案