【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
【答案】(1)y=﹣x2+2x+3;(2)(,);(3)當(dāng)點(diǎn)P的坐標(biāo)為(,)時(shí),四邊形ACPB的最大面積值為.
【解析】
(1)已知二次函數(shù)上兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求解二次函數(shù)的解析式。
(2)根據(jù)菱形的對角線互相垂直且平分,可得P點(diǎn)的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點(diǎn)坐標(biāo);
(3)根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.
解:(1)將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得
,
解得,
二次函數(shù)的解析是為y=﹣x2+2x+3;
(2)若四邊形POP′C為菱形,則點(diǎn)P在線段CO的垂直平分線上,
如圖1,連接PP′,則PE⊥CO,垂足為E,
∵C(0,3),
∴E(0,),
∴點(diǎn)P的縱坐標(biāo),
當(dāng)y=時(shí),即﹣x2+2x+3=,
解得x1=,x2=(不合題意,舍),
∴點(diǎn)P的坐標(biāo)為(,);
(3)如圖2,
P在拋物線上,設(shè)P(m,﹣m2+2m+3),
設(shè)直線BC的解析式為y=kx+b,
將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得
,
解得.
直線BC的解析為y=﹣x+3,
設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m+3),
PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
當(dāng)y=0時(shí),﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
OA=1,
AB=3﹣(﹣1)=4,
S四邊形ABPC=S△ABC+S△PCQ+S△PBQ
=ABOC+PQOF+PQFB
=×4×3+(﹣m2+3m)×3
=﹣(m﹣)2+,
當(dāng)m=時(shí),四邊形ABPC的面積最大.
當(dāng)m=時(shí),﹣m2+2m+3=,即P點(diǎn)的坐標(biāo)為(,).
當(dāng)點(diǎn)P的坐標(biāo)為(,)時(shí),四邊形ACPB的最大面積值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=12,G是BC的中點(diǎn).將△ABG沿AG對折至△AFG,延長GF交DC于點(diǎn)E,則DE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過A(0,3),且對稱軸是直線x=2.
(1)求該函數(shù)的解析式;
(2)在拋物線上找一點(diǎn)P,使△PBC的面積是△ABC的面積的,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求AB的長和點(diǎn)C的坐標(biāo);
(2)求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:兩個(gè)二次項(xiàng)系數(shù)之和為1,對稱軸相同,且圖象與y軸交點(diǎn)也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為.
請你分別寫出,的友好同軸二次函數(shù);
滿足什么條件的二次函數(shù)沒有友好同軸二次函數(shù)?滿足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?
如圖,二次函數(shù):與其友好同軸二次函數(shù)都與y軸交于點(diǎn)A,點(diǎn)B、C分別在、上,點(diǎn)B,C的橫坐標(biāo)均為,它們關(guān)于的對稱軸的對稱點(diǎn)分別為,,連結(jié),,,CB.
若,且四邊形為正方形,求m的值;
若,且四邊形的鄰邊之比為1:2,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點(diǎn)坐標(biāo).
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)△PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時(shí)x的取值范圍;
②直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:我們可以將任意三位數(shù)記為,(其中、、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字,且),顯然.
材料二:若一個(gè)三位數(shù)的百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字均不為0,則稱之為初始數(shù),比如123就是一個(gè)初始數(shù),將初始數(shù)的三個(gè)數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個(gè)新的初始數(shù),比如由123可以產(chǎn)生出132,213,231,312,321這5個(gè)新初始數(shù),這6個(gè)初始數(shù)的和成為終止數(shù).
(1)求初始數(shù)125生成的終止數(shù);
(2)若一個(gè)初始數(shù),滿足,且,記,,,若,求滿足條件的初始數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年是全面建成小康社會(huì)收官之年,某扶貧幫扶小組積極響應(yīng),對農(nóng)民實(shí)施精準(zhǔn)扶貧.某農(nóng)戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調(diào)研發(fā)現(xiàn),花椒市場價(jià)60元/千克,黑木耳市場價(jià)48元/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25元/千克,種植木耳成本需35元/千克,根據(jù)脫貧目標(biāo)任務(wù)要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形的頂點(diǎn)的坐標(biāo)分別為,,是的中點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度,沿著運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒().
(1)點(diǎn)的坐標(biāo)是______;
(2)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),點(diǎn)的坐標(biāo)是______(用表示);
(3)求的面積與之間的函數(shù)表達(dá)式,并寫出對應(yīng)自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com