【題目】如圖①,已知是的外角的平分線,且交的延長(zhǎng)線于點(diǎn).
(1)若恰好垂直平分,求的度數(shù);
(2)王涵探究后提出等式:,請(qǐng)通過證明判斷“王涵發(fā)現(xiàn)”是否正確;
(3)如圖②,過點(diǎn)作,垂足為,若,,求的度數(shù).
【答案】(1)60°(2)結(jié)論錯(cuò)誤,理由見解析(3)80°.
【解析】
(1)根據(jù)垂直平分線的性質(zhì)得到,,再根據(jù)角平分線的性質(zhì)及平角的性質(zhì)即可求解;
(2)根據(jù)外角定理得到,根據(jù)角平分線的性質(zhì)與平行線的判定定理可知,故結(jié)論錯(cuò)誤;
(3)設(shè),,根據(jù)已知條件和角平分線的性質(zhì)與外角定理得到關(guān)于x,y的方程組即可求解x,y,故可得到的度數(shù).
(1)∵垂直平分,
∴,
則
∵是的外角的平分線,
∴
∴=
又+=180°
∴=60°
(2)結(jié)論錯(cuò)誤;
∵是的外角的平分線,
∴
∵,
∴
∵BE與CE相交,
∴
∴
故“王涵發(fā)現(xiàn)”錯(cuò)誤;
(3)設(shè),,
∵是的外角的平分線,
∴
∵,
∴,
∵,
故
∴
∵
∴=2y
∴2x=3y①
∵
∴
故2x-y+y+x=90°②
由①②得x=30°,y=20°
∴=80°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬圣節(jié)兩周前,某商店購(gòu)進(jìn)1000個(gè)萬圣節(jié)面具,進(jìn)價(jià)為每個(gè)6元,第一周以每個(gè)10元的價(jià)格售出200個(gè);隨著萬圣節(jié)的臨近,預(yù)計(jì)第二周若按每個(gè)10元的價(jià)格銷售可售出400個(gè),但商店為了盡快減少庫(kù)存,決定單價(jià)降價(jià)x元銷售根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出100個(gè),但售價(jià)不得低于進(jìn)價(jià);節(jié)后,商店對(duì)剩余面具清倉(cāng)處理,以第一周售價(jià)的四折全部售出.
當(dāng)單價(jià)降低2元時(shí),計(jì)算第二周的銷售量和售完這批面具的總利潤(rùn);
如果銷售完這批面具共獲利1300元,問第二周每個(gè)面具的銷售價(jià)格為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,已知木欄總長(zhǎng)為100米.
(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長(zhǎng);
(2)已知0<α<50,且空地足夠大,如圖2.請(qǐng)你合理利用舊墻及所給木欄設(shè)計(jì)一個(gè)方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將進(jìn)貨單價(jià)為元的商品按元售出時(shí),就能賣出個(gè).已知這種商品每個(gè)漲價(jià)元,其銷售量就減少個(gè),問為了賺得元的利潤(rùn),而成本價(jià)又不高于元,售價(jià)應(yīng)定為多少?這時(shí)應(yīng)進(jìn)貨多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線直線,,觀察圖中的作圖痕跡完成下列各題.
(1)求的度數(shù);
(2)求圖中與全等三角形(除以外)的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測(cè)得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是邊AC上一點(diǎn),連BD,給出下列條件:①∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨(dú)能夠判定△ABC∽△ADB的個(gè)數(shù)是( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程4x2+4(m﹣1)x+m2=0
(1)當(dāng)m在什么范圍取值時(shí),方程有兩個(gè)實(shí)數(shù)根?
(2)設(shè)方程有兩個(gè)實(shí)數(shù)根x1 , x2 , 問m為何值時(shí),x12+x22=17?
(3)若方程有兩個(gè)實(shí)數(shù)根x1,x2, 問x1和x2能否同號(hào)?若能同號(hào),請(qǐng)求出相應(yīng)m的取值范圍;若不能同號(hào),請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com