【題目】如圖,平行四邊形的兩個頂點在反比例函數(shù)的圖象上,點在軸上,且兩點關(guān)于原點對稱,交軸于點,已知點的坐標(biāo)是(2,3).
(1)求的值;
(2)若的面積為2,求點的坐標(biāo).
【答案】(1)6 (2)(-4,0)
【解析】
(1)將點的坐標(biāo)是(2,3)代入反比例函數(shù)解析式即可得出k的值;
(2)設(shè)點P的坐標(biāo)為(0,m),直線AP的解析式為,依據(jù)三角形面積得出m的值,再根據(jù)A,P的坐標(biāo)求出直線AP的解析式,即可求出點D的坐標(biāo).
解:(1)∵點A(2,3)在反比例函數(shù)的圖象上,
∴ ;
(2)設(shè)點P的坐標(biāo)為(0,m),直線AP的解析式為
依題意得
解得,即點P的坐標(biāo)為(0,2).
則解得,因此直線AP的解析式為
∵點D在直線AP上,∴,解得
∴D點的坐標(biāo)為(-4,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2.
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= ,OC△OA= ;
(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=4,∠A=30°,線段AB上有一個動點P,過點P作PD∥BC,交AC于D,連接PC,則△PCD的最大面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線的頂點坐標(biāo)為(0,1)且經(jīng)過點A(1,2),直線y=3x﹣4經(jīng)過點B(,n),與y軸交點為C.
(1)求拋物線的解析式及n的值;
(2)將直線BC繞原點O逆時針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;
(3)如圖2將拋物線繞原點O順時針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點M、N,點M在點N的上方,求點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為( )
A. 2017π B. 2034π C. 3024π D. 3026π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,矩形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)只需添加一個條件,即______,可使四邊形BEDF為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com