【題目】有這樣一個問題:探究函數的性質.
(1)先從簡單情況開始探究:
① 當函數為時, 隨增大而 (填“增大”或“減小”);
② 當函數為時,它的圖象與直線的交點坐標為 ;
(2)當函數為時,
下表為其y與x的幾組對應值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||
y | … | 1 | 2 | 3 | 7 | … |
①如圖,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點,請根據描出的點,畫出該函數的圖象;
②根據畫出的函數圖象,寫出該函數的一條性質: .
【答案】(1)①增大;②(1,1),(2,2); (2)①圖形見解析(3)性質見解析
【解析】試題分析:(1)①整理成一次函數的一般式,根據一次函數的性質得出即可;
②求出組成的方程組的解,即可得出答案;
(2)①把各個點用平滑的曲線連接即可;②根據圖象和(1)中結論寫出一個符合的信息即可.
試題分析 :
解:(1)①∵y= (x-1)+x=x-,
k=>0,
∴y隨x增大而增大,
故答案為:增大;
②解方程組
得: , ,
所以兩函數的交點坐標為(1,1),(2,2),
故答案為:(1,1),(2,2);
(2)①如圖:
②該函數的性質:
a、y隨x的增大而增大;
b、函數的圖象經過第一、三、四象限;
c、函數的圖象與x軸y軸各有一個交點;
d、函數圖象與直線y=x的交點坐標為(1,1)(2,2)(3,3).
科目:初中數學 來源: 題型:
【題目】如圖(1),AB=4,AC⊥AB,BD⊥AB,AC=BD=3.點 P 在線段 AB 上以 1的速度由點 A 向點 B 運動,同時,點 Q 在線段 BD 上由點 B 向點 D 運動.它們運動的時間為 (s).
(1)若點 Q 的運動速度與點 P 的運動速度相等,當=1 時,△ACP 與△BPQ 是否全等,請說明理由, 并判斷此時線段 PC 和線段 PQ 的位置關系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點 Q 的運動速度為,是否存在實數,使得△ACP 與△BPQ 全等?若存在,求出相應的、的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達終點.
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度.
C. 小蘇在跑最后100m的過程中,與小林相遇2次.
D. 小蘇前15s跑過的路程小于小林前15s跑過的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩點在數軸上對應的數分別為,且點A在點B的左側,
(1)求出a,b的值;
(2)現有一只螞蟻P從點A出發(fā),以每秒3個單位長度的速度向右運動,同時另一只螞蟻Q從點B出發(fā),以每秒2個單位長度的速度向右運動.
①兩只螞蟻經過多長時間相遇?
②設兩只螞蟻在數軸上的點C處相遇,求點C對應的數;
③經過多長時間,兩只螞蟻在數軸上相距20個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點A,畫過A點的圓的切線.
畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經過點A,另一條直角邊與圓交于B點,連接AB;
(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經過點B,畫出另一條直角邊所在的直線AD.
所以直線AD就是過點A的圓的切線.
請回答:該畫圖的依據是_______________________________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:點P為△ABC內部或邊上的點,若滿足△PAB,△PBC,△PAC至少有一個三角形與△ABC相似(點P不與△ABC頂點重合),則稱點P為△ABC的自相似點.
例如:如圖1,點P在△ABC的內部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P為△ABC的自相似點.
在平面直角坐標系xOy中,
(1)點A坐標為(, ), AB⊥x軸于B點,在E(2,1),F (, ),G (, ),這三個點中,其中是△AOB的自相似點的是 (填字母);
(2)若點M是曲線C: (, )上的一個動點,N為x軸正半軸上一個動點;
圖2
① 如圖2, ,M點橫坐標為3,且NM = NO,若點P是△MON的自相似點,求點P的坐標;
②若,點N為(2,0),且△MON的自相似點有2個,則曲線C上滿足這樣條件的點M共有 個,請在圖3中畫出這些點(保留必要的畫圖痕跡).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為方便顧客停車,決定設計一個地下停車場,為了測得該校地下停車場的限高CD,在施工時間測得下列數據:如圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車場的高度AC及限高CD(結果精確到0.1米).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知長方形紙片ABCD,AB=4,BC=10,M是BC的中點,點P沿折線BA—AD運動,以MD為折癟將長方形紙片向右翻折,使點B落在長方形的AD邊上,則折痕MP的長______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求不等式(2x﹣1)(x+3)>0的解集.
解:根據“同號兩數相乘,積為正”可得:①或 ②.
解①得x>;解②得x<﹣3.
∴不等式的解集為x>或x<﹣3.
請你仿照上述方法解決下列問題:
(1)求不等式(2x﹣3)(x+1)<0的解集.
(2)求不等式≥0的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com