【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于點(diǎn)A2,5),C5,n),y軸于點(diǎn)B,x軸于點(diǎn)D

1)求反比例函數(shù)和一次函數(shù)y1=kx+b的表達(dá)式;

2)連接OAOC,AOC的面積

3)根據(jù)圖象,直接寫(xiě)出y1y2時(shí)x的取值范圍

【答案】(1)反比例函數(shù)的表達(dá)式是y2= ,一次函數(shù)的表達(dá)式是y1=x﹣3;(2)10.5;(3)-2<x<0x>5.

【解析】試題分析:1)把的坐標(biāo)代入反比例函數(shù)的解析式求出,把的坐標(biāo)代入反比例函數(shù)解析式求出,把的坐標(biāo)代入一次函數(shù)的解析式得出方程組,求出方程組的解即可;
2)求出一次函數(shù)與x軸的交點(diǎn)坐標(biāo),的值,根據(jù)三角形的面積公式求出即可;
3)結(jié)合圖象和的坐標(biāo)即可求出答案.

試題解析:(1)∵把A(2,5)代入代入得:m=10,

∵把C(5,n)代入得:n=2,

C(5,2),

∵把A.C的坐標(biāo)代入得:

解得:k=1,b=3,

答:反比例函數(shù)的表達(dá)式是一次函數(shù)的表達(dá)式是

(2)∵把y=0代入得:x=3,

D(3,0),OD=3,

答:△AOC的面積是10.5;

(3)根據(jù)圖象和A.C的坐標(biāo)得出時(shí)x的取值范圍是:2<x<0x>5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)BD的垂直平分線(xiàn)MNAD相交于點(diǎn)M,與BC相交于點(diǎn)N.連接BMDN

(1)求證:四邊形BMDN是菱形;

(2)AB=4,AD=8,求MD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三個(gè)視圖如圖所示(單位:cm).

(1)寫(xiě)出這個(gè)幾何體的名稱(chēng): ;

(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCO,以點(diǎn)O為原點(diǎn),OC所在的直線(xiàn)為x軸,建立直角坐標(biāo)系,ABy軸于點(diǎn)D,AD=4,OC=10,∠A=60°,線(xiàn)段EF垂直平分OD,點(diǎn)P為線(xiàn)段EF上的動(dòng)點(diǎn),PM⊥x軸于點(diǎn)M點(diǎn),點(diǎn)EE'關(guān)于x軸對(duì)稱(chēng),連接BPE'M,則BP+PM+ME'的長(zhǎng)度的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某柜臺(tái)銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為160元、120元的AB兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入進(jìn)貨成本)

(1)A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),請(qǐng)問(wèn)商場(chǎng)銷(xiāo)售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)的污水處理設(shè)備共8臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買(mǎi)A2臺(tái)、B3臺(tái)需54萬(wàn),購(gòu)買(mǎi)A4臺(tái)、B2臺(tái)需68萬(wàn)元.

1)求出A型、B型污水處理設(shè)備的單價(jià);

2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱(chēng)的A1B1C1

2)將A1B1C1向右平移4個(gè)單位,作出平移后的A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫(xiě)出點(diǎn)P的坐標(biāo)(不寫(xiě)解答過(guò)程,直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠(chǎng)家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠(chǎng)生產(chǎn)三種不同型號(hào)的電視機(jī),出廠(chǎng)價(jià)分別為甲種每臺(tái)1500, 乙種每臺(tái)2100, 丙種每臺(tái)2500, 若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬(wàn)元.請(qǐng)你通過(guò)計(jì)算,說(shuō)明商場(chǎng)有哪些進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知ABC中,ABBC1,∠ABC90°,把一塊含30°角的直角三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEFD點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn).

1)在圖1中,DE交邊ABM,DF交邊BCN,證明:DMDN;

2)在這一旋轉(zhuǎn)過(guò)程中,直角三角板DEFABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的?若不發(fā)生變化,求出其面積;

3)繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)ABDEM,延長(zhǎng)BCDFN,DMDN是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案