【題目】閱讀下列材料并解決有關(guān)問題.
我們知道,|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值).在實數(shù)范圍內(nèi),零點值x=-1和x=2可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)x<-1;
(2)-1≤x<2;
(3)x≥2.
從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當(dāng)x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當(dāng)-1≤x<2時,原式=x+1-(x-2)=3;
(3)當(dāng)x≥2時,原式=x+1+x-2=2x-1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x+3|和|x-5|的零點值;
(2)化簡|x+3|+|x-5|.
【答案】(1)-3、5;(2)原式=.
【解析】
(1)令x+3=0和x-5=0,求出x的值即可得出|x+3|和|x-5|的零點值;
(2)零點值x=-3和x=5可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:x<-3、-3≤x<5和x≥5.分該三種情況去絕對值符號即可.
(1)令x+3=0和x-5=0,
解得:x=-3,x=5,
∴|x+3|和|x-5|的零點值分別為-3、5.
(2)在實數(shù)范圍內(nèi),零點值x=-3和x=5可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:x<-3、-3≤x<5和x≥5,
當(dāng)x<-3時,原式=-x-3+5-x=-2x+2;
當(dāng)-3≤x<5時,原式=x+3+5-x=8;
當(dāng)x≥5時,原式=x+3+x-5=2x-2,
綜上討論,原式=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于A,B兩點,以AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC,點C為直角頂點,連接OC.
(1)直接寫出= ;
(2)請你過點C作CE⊥y軸于E點,試探究OB+OA與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點M為AB的中點,點N為OC的中點,求MN的值;
(4)如圖2,將線段AB繞點B沿順時針方向旋轉(zhuǎn)至BD,且OD⊥AD,延長DO交直線于點P,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=x-2y,B=-x-4y+1.
(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示)
(2)當(dāng)與互為相反數(shù)時,求(1)中代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有點A,表示的數(shù)為-1.
(1)若在數(shù)軸上有點B,表示的數(shù)為3,則A和B之間的距離為__________;
(2)寫出到A點的距離為3的數(shù):__________;
(3)若在數(shù)軸上有點P,表示的數(shù)為,則A和P之間的距離為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上有兩點A、B,它們對應(yīng)的數(shù)分別為a、b,其中a=12.
(1)在點B的左側(cè)作線段BC=AB,在B的右側(cè)作線段BD=3AB(要求:作出圖形,不寫作法,保留作圖痕跡);
(2)若點C對應(yīng)的數(shù)為c,點D對應(yīng)的數(shù)為的d,且AB=20,求c、d的值;
(3)在(2)的條件下,設(shè)點M是BD的中點,N是數(shù)軸上一點,且CN=2DN,請直接寫出MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的周長為4個單位長,數(shù)軸每個數(shù)字之間的距離為1個單位,在圓的四等分點處分別標(biāo)上0,1,2,3,先讓圓周上表示數(shù)字0的點與數(shù)軸上表示-1的點重合.再將數(shù)軸按逆時針方向環(huán)繞在該圓上(如圓周上表示的數(shù)字3的點與數(shù)軸上表示-2的點重合……),則該數(shù)軸上表示-2019的點與圓周上重合的點表示的數(shù)字是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:數(shù)學(xué)活動課上,陳老師給出如下定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做對等四邊形.
理解:(1)如圖1,已知A、B、C在格點(小正方形的頂點)上,請在方格圖中畫出以格點為頂點,AB、BC為邊的兩個對等四邊形ABCD;
應(yīng)用:(2)如圖2,在Rt△PBC中,∠PCB=90°,BC=9,點A在BP邊上,且AB=13.AD⊥PC,CD=12,若PC上存在符合條件的點M,使四邊形ABCM為對等四邊形,求出CM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com