【題目】有一座拋物線形拱橋,正常水位時(shí)橋下水面寬為20m,拱頂距水面4m.

(1)在如圖的直角坐標(biāo)系中,求出該拋物線的解析式;

(2)為保證過往船只順利航行,橋下水面寬度不得小于18m,求水面在正常水位基礎(chǔ)上,最多漲多少米,不會(huì)影響過往船只?

【答案】(1)y=﹣0.04(x﹣10)2+4(2)0.76m

【解析】

(1)設(shè)所求拋物線的解析式為:y=a(x﹣h)2+k,由已知條件易知hk的值,再把點(diǎn)C的坐標(biāo)代入求出a的值即可;

(2)由題意得可設(shè)E(1,y),把點(diǎn)E的坐標(biāo)代入已經(jīng)求出的拋物線解析式求出y的值即可得到最多漲多少米不會(huì)影響過往船只.

(1)設(shè)所求拋物線的解析式為:y=a(x﹣h)2+k,

∵由AB=20,AB到拱橋頂C的距離為4m,

C(10,4),A(0,0),B(20,0)

A,B,C的坐標(biāo)分別代入得a=﹣0.04,h=10,k=4

拋物線的解析式為y=﹣0.04(x﹣10)2+4;

(2)由題意得可設(shè)E(1,y),

E點(diǎn)坐標(biāo)代入拋物線的解析式為y=﹣0.04(x﹣10)2+4,

解得:y=﹣0.76,

DF=0.76m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DEBC,垂足為E.

(1)求證:CD平分∠ACE;

(2)若AC=9,CE=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某專賣店經(jīng)市場調(diào)查得知,一種商品的月銷售量 Q(單位:噸)與銷售價(jià)格 x(單位:萬元/)的關(guān)系可用下圖中的折線表示.

(1)寫出月銷售量 Q 關(guān)于銷售價(jià)格 x 的關(guān)系;

(2)如果該商品的進(jìn)價(jià)為 5 萬元/噸,除去進(jìn)貨成本外,專賣店銷售該商品每月的固定成本為 10 萬元,問該商品 每噸定價(jià)多少萬元時(shí),銷售該商品的月利潤最大?并求月利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某專賣店經(jīng)市場調(diào)查得知,一種商品的月銷售量 Q(單位:噸)與銷售價(jià)格 x(單位:萬元/)的關(guān)系可用下圖中的折線表示.

(1)寫出月銷售量 Q 關(guān)于銷售價(jià)格 x 的關(guān)系;

(2)如果該商品的進(jìn)價(jià)為 5 萬元/噸,除去進(jìn)貨成本外,專賣店銷售該商品每月的固定成本為 10 萬元,問該商品 每噸定價(jià)多少萬元時(shí),銷售該商品的月利潤最大?并求月利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí),PC=30 m,點(diǎn)C與點(diǎn)A恰好在同一水平線上,點(diǎn)A、B、P、C在同一平面內(nèi)。

(1)求居民樓AB的高度;

(2)求C、A之間的距離。(精確到0.1m,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,直線經(jīng)過點(diǎn),且于點(diǎn),于點(diǎn).易得(不需要證明).

1)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),其余條件不變,你認(rèn)為上述結(jié)論是否成立?若成立,寫出證明過程;若不成立,請寫出此時(shí)之間的數(shù)量關(guān)系,并說明理由;

2)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),其余條件不變,請直接寫出此時(shí)之間的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦DE交AB于點(diǎn)F,O的切線BC與AD的延長線交于點(diǎn)C,連接AE.

(1)試判斷AED與C的數(shù)量關(guān)系,并說明理由;

(2)若AD=3,C=60°,點(diǎn)E是半圓AB的中點(diǎn),則線段AE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)邊上的中點(diǎn),、分別垂直、于點(diǎn).求證:

查看答案和解析>>

同步練習(xí)冊答案