【題目】若點(diǎn)A(﹣1,2),B(2,﹣3)在直線y=kx+b上,則函數(shù)y= 的圖象在( )
A.第一、三象限
B.第一、二象限
C.第二、四象限
D.第二、三象限
【答案】C
【解析】解:根據(jù)題意,將點(diǎn)A(﹣1,2),B(2,﹣3)代入直線y=kx+b,
得: ,
解得: ,
∴由反比例函數(shù)的性質(zhì)可知,k=﹣ <0時,函數(shù)y= 的圖象在第二、四象限,
故選:C.
【考點(diǎn)精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象的相關(guān)知識點(diǎn),需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn);反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點(diǎn)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C是數(shù)軸上的三點(diǎn),O是原點(diǎn),BO=3,AB=2BO,5AO=3CO.
(1)寫出數(shù)軸上點(diǎn)A、C表示的數(shù);
(2)點(diǎn)P、Q分別從A、C同時出發(fā),點(diǎn)P以每秒2個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,點(diǎn)Q以每秒6個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,M為線段AP的中點(diǎn),點(diǎn)N在線段CQ上,且CN=CQ.設(shè)運(yùn)動的時間為t(t>0)秒.
①數(shù)軸上點(diǎn)M、N表示的數(shù)分別是 (用含t的式子表示);
②t為何值時,M、N兩點(diǎn)到原點(diǎn)的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=8,BC=6,點(diǎn)O為對角線BD的中點(diǎn),點(diǎn)P從點(diǎn)A出發(fā),沿折線AD﹣DO以每秒1個單位長度的速度向終點(diǎn)O運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AB于點(diǎn)Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動的時間為t(秒).
(1)如圖2,當(dāng)點(diǎn)N落在BD上時,求t的值;
(2)當(dāng)正方形PQMN的邊經(jīng)過點(diǎn)O時(包括正方形PQMN的頂點(diǎn)),求此時t的值;
(3)當(dāng)點(diǎn)P在邊AD上運(yùn)動時,求S與t之間的函數(shù)關(guān)系式;
(4)寫出在點(diǎn)P運(yùn)動過程中,直線DN恰好平分△BCD面積時t的所有可能值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點(diǎn)A順時針旋轉(zhuǎn)到Rt△ADE的位置,點(diǎn)E在斜邊AB上,連結(jié)BD,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)如圖1,若點(diǎn)F與點(diǎn)A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,
①如圖2,當(dāng)點(diǎn)F在線段CA的延長線上時,判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)點(diǎn)F在線段CA上時,設(shè)BE=x,請用含x的代數(shù)式表示線段AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖。請根據(jù)圖中信息,解答下列問題:
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922393511583744/1923977001213952/STEM/d5900c7cb9b84a9a89aefef7d82bcf93.png]
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計圖;
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOD=120°,FO⊥OD,OE平分∠BOD.
(1)求∠EOF的度數(shù);
(2)試說明OB平分∠EOF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com