20.在射線OM、ON分別找兩點(diǎn)P、Q,使得四邊形PQBA的周長(zhǎng)最短.

分析 分別作點(diǎn)A、B關(guān)于OM、ON的對(duì)稱(chēng)點(diǎn)A′和B′,連接A′、B′交OM、ON于點(diǎn)P、Q.

解答 解:如圖所示:

點(diǎn)評(píng) 本題主要考查的是軸對(duì)稱(chēng)-最短路徑問(wèn)題,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.化簡(jiǎn):
(1)$\sqrt{4{1}^{2}-{9}^{2}}$;
(2)$\sqrt{(-3)^{3}×(-5)^{7}}$;
(3)$\sqrt{-12{a}^{4}^{3}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.小明在解關(guān)于x的方程$\frac{3x-2}{5}$=$\frac{x-a}{10}$-2去分母時(shí),方程左邊的-2沒(méi)有乘10,因而求得的解為x=-$\frac{1}{5}$,求出方程的正確解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)計(jì)算(2$\sqrt{3}$-1)2
(2)($\sqrt{6}$-2$\sqrt{15}$)×$\sqrt{3}$-6$\sqrt{\frac{1}{2}}$
(3)解方程組$\left\{\begin{array}{l}{x+y=300}\\{2x+5y=1140}\end{array}$
(4)已知如圖在平面直角坐標(biāo)系中兩直線相交于點(diǎn)P,求交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知某四棱柱的俯視圖如圖所示,畫(huà)出它的主視圖和左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=$\frac{m}{x}$(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),與y軸交于D點(diǎn);點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(-2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以發(fā)現(xiàn)終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請(qǐng)參照?qǐng)D并思考,完成下列各題.

(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是4,A、B兩點(diǎn)間的距離是7;
(2)如果點(diǎn)A表示數(shù)3,將點(diǎn)A向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是1,A、B兩點(diǎn)間的距離為2;
(3)如果點(diǎn)A表示數(shù)-4,將點(diǎn)A向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是-92,A、B兩點(diǎn)間的距離為88.
(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么,請(qǐng)你猜想終點(diǎn)B表示的數(shù)是m+n-p,A、B兩點(diǎn)間的距離是|n-p|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,點(diǎn)B、C、D都在半徑為6的⊙O上,過(guò)點(diǎn)C作AC∥BD交OB的延長(zhǎng)線于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.選擇適當(dāng)?shù)姆椒ń夥匠蹋?br />(1)(x+3)2=2x+6;
(2)2x2+1=2$\sqrt{3}$x;
(3)4(x+3)2=25(x-2)2;
(4)2(x-3)2=x2-9.

查看答案和解析>>

同步練習(xí)冊(cè)答案