某校把一塊沿河的三角形廢地(如圖)開辟為生物園,已知∠ACB=90°,
∠CAB=54°,BC=60米.
小題1:現(xiàn)學(xué)校準(zhǔn)備從點(diǎn)C處向河岸AB修一條小路CD,使得CD將生物園分割成面積相等的兩部分.請你用直尺和圓規(guī)在圖中作出小路CD(保留作圖痕跡);
小題2:為便于澆灌,學(xué)校在點(diǎn)C處建了一個蓄水池,利用管道從河中取水.已知每鋪設(shè)1米管道費(fèi)用為50元,求鋪設(shè)管道的最低費(fèi)用.(sin36°≈0.588,cos36°≈0.809,tan36°≈0.727,精確到1元)

小題1:用尺規(guī)作AB的垂直平分線交AB于點(diǎn)D,連接CD. …………………3分
小題2:作CE⊥AB. ∵∠ACB=90°,∠CAB=54°
∴ ∠ABC=36°                      ………………………………4分
在Rt△BCE中,=sin∠CBE.            …………………………6分
∴CE=BC·sin∠CBE=60·sin36°≈35.28(米) ……………………8分
∴鋪設(shè)管道的最低費(fèi)用=50·CE≈1764(元)  ………………………9分
(1)若讓CD將生物園分割成面積相等的兩部分,則高相等,只需底相等,利用垂直平分線的做法即可.
(2)作高CE. 由∠CAB=54°得∠ABC=36°. 在Rt△BCE中,=sin∠CBE.
∴CE=BC·sin∠CBE=60·sin36°≈35. 28(米).即鋪設(shè)管道的最低費(fèi)用=50·CE≈1764(元)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在⊿ABC中,∠ACB=90°,D、E、F分別是AC、AB、BC的中點(diǎn)。求證:CF=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明家所在居民樓的對面有一座大廈AB,米.為測量這座居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.求小明家所在居民樓與大廈的距離CD的長度.(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用直角邊分別為3和4的兩個直角三角形拼成四邊形,所得的四邊形的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,我班同學(xué)組織課外實(shí)踐活動,預(yù)測量一建筑物的高度,在建筑物附近一斜坡A點(diǎn)測得建筑物頂端D的仰角為30°,在坡底C點(diǎn)測得建筑物頂端D的仰角為60°,已知A點(diǎn)的高度AB為20米,AC的坡度為1∶1 (即ABBC=1∶1),且B、C、E三點(diǎn)在同一條直線上,請根據(jù)以上條件求出建筑物DE的高度(測量器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

張師傅根據(jù)某直三棱柱零件,按1:1的比例畫出準(zhǔn)確的三視圖如下:已知△EFG中,EF="4" cm,∠EFG=45°,FG="10" cm,AD="12" cm.(1)求AB的長;(2)直接寫出這個直三棱柱的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用16cm長的鐵絲彎成一個矩形,用18cm長的鐵絲彎成一個腰長為5cm的等腰三角形,如果矩形的面積與等腰三角形的面積相等,則矩形中較長的邊長為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把命題“如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么a2+b2=c2”的逆命題改寫成“如果…,那么…”的形式:如果三角形三邊長a,b,c,滿足a2+b2=c2,那么這個三角形是直角三角形                              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,∠C=90°, BC=6 cm,,則AC 的長是      ▲  cm.

查看答案和解析>>

同步練習(xí)冊答案