以直線為對(duì)稱軸的拋物線與軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為.
(1)求點(diǎn)B的坐標(biāo);
(2)設(shè)點(diǎn)M、N在拋物線線上,且,試比較、的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=的圖像經(jīng)過B、C兩點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖像探索:當(dāng)y>0時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù): .
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線y=-與y軸交于(0,3),
⑴求m的值;
⑵求拋物線與x軸的交點(diǎn)坐標(biāo)及頂點(diǎn)坐標(biāo);
⑶當(dāng)x取何值時(shí),拋物線在x軸上方?
⑷當(dāng)x取何值時(shí),y隨x的增大而增大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象過A(-1,-2)、B(1,0)兩點(diǎn).
(1)求此二次函數(shù)的解析式并畫出二次函數(shù)圖象;
(2)點(diǎn)P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)M,交二次函數(shù)的圖象于點(diǎn)N.當(dāng)點(diǎn)M位于點(diǎn)N的上方時(shí),直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
東方商場(chǎng)購進(jìn)一批單價(jià)為20元的日用品,銷售一段時(shí)間后,經(jīng)調(diào)查發(fā)現(xiàn),若按每件24元的價(jià)格銷售時(shí),每月能賣36件;若按每件29元的價(jià)格銷售時(shí),每月能賣21件,假定每月銷售件數(shù)y(件)與價(jià)格x(元/件)之間滿足關(guān)系一次函數(shù).
(1)試求y與x的函數(shù)關(guān)系式;
(2)為了使每月獲得利潤為144元,問商品應(yīng)定為每件多少元?
(3)為了獲得了最大的利潤,商品應(yīng)定為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊△ABC的邊長為4,E是邊BC上的動(dòng)點(diǎn),EH⊥AC于H,過E作EF∥AC,交線段AB于點(diǎn)F,在線段AC上取點(diǎn)P,使PE=EB.設(shè)EC=x(0<x≤2).
(1)請(qǐng)直接寫出圖中與線段EF相等的兩條線段(不再另外添加輔助線);
(2)Q是線段AC上的動(dòng)點(diǎn),當(dāng)四邊形EFPQ是平行四邊形時(shí),求平行四邊形EFPQ的面積(用含的代數(shù)式表示);
(3)當(dāng)(2)中 的平行四邊形EFPQ面積最大值時(shí),以E為圓心,r為半徑作圓,根據(jù)⊙E與此時(shí)平行四邊形EFPQ四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
李經(jīng)理在某地以10元/千克的批發(fā)價(jià)收購了2 000千克核桃,并借一倉庫儲(chǔ)存.在存放過程中,平均每天有6千克的核桃損耗掉,而且倉庫允許存放時(shí)間最多為60天.若核桃的市場(chǎng)價(jià)格在批發(fā)價(jià)的基礎(chǔ)上每天每千克上漲0.5元。
(1)存放x天后,將這批核桃一次性出售,如果這批核桃的銷售總金額為y元,試求出y與x之間的函數(shù)關(guān)系式;
(2)如果倉庫存放這批核桃每天需要支出各種費(fèi)用合計(jì)340元,李經(jīng)理要想獲得利潤22 500元,需將這批核桃存放多少天后出售?(利潤=銷售總金額-收購成本-各種費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y=x2+bx+c經(jīng)過(2,-1)和(4,3)兩點(diǎn).
(1)求出這個(gè)拋物線的解析式;
(2)將該拋物線向右平移1個(gè)單位,再向下平移3個(gè)單位,得到的新拋物線解析式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com