【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小東的探究過程,請(qǐng)補(bǔ)充完成:

(1)化簡(jiǎn)函數(shù)解析式,當(dāng)時(shí),___________,當(dāng)時(shí)____________;

(2)根據(jù)(1)中的結(jié)果,請(qǐng)?jiān)谒o坐標(biāo)系中畫出函數(shù)的圖象;備用圖

(3)結(jié)合畫出的函數(shù)圖象,解決問題:若關(guān)于的方程只有一個(gè)實(shí)數(shù)根,直接寫出實(shí)數(shù)的取值范圍:___________________________.

【答案】(1)x,3;(2)詳見解析;(3)

【解析】

(1)根據(jù)絕對(duì)值的性質(zhì)化簡(jiǎn)即可

(2)在坐標(biāo)系中瞄點(diǎn),用平滑的直線連接即可;

(3)根據(jù)圖表可知當(dāng)y=只有一個(gè)交點(diǎn)時(shí)即可求得.

:(1)當(dāng)時(shí), =,當(dāng)時(shí) =3;

(2)根據(jù)(1)中的結(jié)果,畫出函數(shù)的圖象如下:

(3)由題意可知y=只有一個(gè)交點(diǎn),

∴①當(dāng)y=呈下降趨勢(shì),;

②當(dāng)y=呈上升趨勢(shì),且與CD平行時(shí),經(jīng)過點(diǎn)(2,3),此時(shí);

③當(dāng)y=呈上升趨勢(shì),且經(jīng)過AB一段時(shí),此時(shí);

綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算: 2sin45°+2π01;

2先化簡(jiǎn),再求值 a2b2),其中a=,b=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn).設(shè)點(diǎn),請(qǐng)?jiān)趻佄锞的對(duì)稱軸上確定一點(diǎn),使得的值最大,則點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一兒童節(jié)前夕,某縣教育局準(zhǔn)備給留守兒童贈(zèng)送一批學(xué)習(xí)用品,先對(duì)紅星小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(1)該校有_____個(gè)班級(jí),補(bǔ)全條形統(tǒng)計(jì)圖;

(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);

(3)若該鎮(zhèn)所有小學(xué)共有60個(gè)教學(xué)班,請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+cb,c是常數(shù))與x軸相交于A,B兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C

1)當(dāng)A(﹣1,0,C0,3)時(shí),求拋物線的解析式和頂點(diǎn)坐標(biāo);

2Pm,t)為拋物線上的一個(gè)動(dòng)點(diǎn).

①當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P落在直線BC上時(shí),求m的值;

②當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P落在第一象限內(nèi),PA2取得最小值時(shí),求m的值及這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點(diǎn),以線段為邊在第四象限內(nèi)作等腰直角,且

1)試寫出點(diǎn)的坐標(biāo): (_ _,_ ___) (_ ,_ )

2)求點(diǎn)的坐標(biāo);

3)求直線的函數(shù)表達(dá)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結(jié)EMAC于點(diǎn)N,連結(jié)DM、CM以下說法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<0;a+b+c>0;③方程ax2+bx+c=0的根是x1=﹣1,x2=3; b2﹣4ac>0;⑤當(dāng)x>1時(shí),yx的增大而增大;正確的說法有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)為C的拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)Ax軸正半軸上的點(diǎn)B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.

(1)求這條拋物線的表達(dá)式;

(2)過點(diǎn)CCE⊥OB,垂足為E,點(diǎn)Py軸上的動(dòng)點(diǎn),若以O、C、P為頂點(diǎn)的三角形與△AOE相似,求點(diǎn)P的坐標(biāo);

(3)若將(2)的線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案