【題目】在Rt△ABC中,∠ACB=90°,AC=BC=3,點(diǎn)D是斜邊AB上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)A、B不重合),連接CD,將CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CE,連接AE,DE.
(1)求△ADE的周長(zhǎng)的最小值;
(2)若CD=4,求AE的長(zhǎng)度.
【答案】(1)6+;(2)3﹣或3+
【解析】
(1)根據(jù)勾股定理得到AB=AC=6,根據(jù)全等三角形的性質(zhì)得到AE=BD,當(dāng)DE最小時(shí),△ADE的周長(zhǎng)最小,過(guò)點(diǎn)C作CF⊥AB于點(diǎn)F,于是得到結(jié)論;
(2)當(dāng)點(diǎn)D在CF的右側(cè),當(dāng)點(diǎn)D在CF的左側(cè),根據(jù)勾股定理即可得到結(jié)論
解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC=3
∴AB=AC=6,
∵∠ECD=∠ACB=90°,
∴∠ACE=∠BCD,
在△ACE與△BCD中, ,
∴△ACE≌△BCD(SAS),
∴AE=BD,
∴△ADE的周長(zhǎng)=AE+AD+DE=AB+DE,
∴當(dāng)DE最小時(shí),△ADE的周長(zhǎng)最小,
過(guò)點(diǎn)C作CF⊥AB于點(diǎn)F,
當(dāng)CD⊥AB時(shí),CD最短,等于3,此時(shí)DE=3,
∴△ADE的周長(zhǎng)的最小值是6+3;
(2)當(dāng)點(diǎn)D在CF的右側(cè),
∵CF=AB=3,CD=4,
∴DF=,
∴AE=BD=BF﹣DF=3﹣;
當(dāng)點(diǎn)D在CF的左側(cè),同理可得AE=BD=3+,
綜上所述:AE的長(zhǎng)度為3﹣或3+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:
;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則.
其中正確的有
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某果園有棵枇杷樹(shù).每棵平均產(chǎn)量為千克,現(xiàn)準(zhǔn)備多種一些枇杷樹(shù)以提高產(chǎn)量,但是如果多種樹(shù),那么樹(shù)與樹(shù)之間的距離和每一棵樹(shù)接受的陽(yáng)光就會(huì)減少,根據(jù)實(shí)踐經(jīng)驗(yàn),每多種一棵樹(shù),投產(chǎn)后果園中所有的枇杷樹(shù)平均每棵就會(huì)減少產(chǎn)量千克,若設(shè)增種棵枇杷樹(shù),投產(chǎn)后果園枇杷的總產(chǎn)量為千克,則與之間的函數(shù)關(guān)系式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生志愿服務(wù)小組在“學(xué)雷鋒”活動(dòng)中購(gòu)買了一批牛奶到江陰兒童福利院看望孤兒.如果分給每位兒童5盒牛奶,那么剩下18盒牛奶;如果分給每位兒童6盒牛奶,那么最后一位兒童分不到6盒,但至少能有3盒.則這個(gè)兒童福利院的兒童最少有________個(gè),最多有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為_____m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一種商品,進(jìn)價(jià)為每個(gè)20元,規(guī)定每個(gè)商品售價(jià)不低于進(jìn)價(jià),且不高于60元,經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(個(gè))與每個(gè)商品的售價(jià)x(元)滿足一次函數(shù)關(guān)系,其部分?jǐn)?shù)據(jù)如下所示:
每個(gè)商品的售價(jià)x(元) | … | 30 | 40 | 50 | … |
每天的銷售量y(個(gè)) | 100 | 80 | 60 | … |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商場(chǎng)每天獲得的總利潤(rùn)為w(元),求w與x之間的函數(shù)表達(dá)式;
(3)不考慮其他因素,當(dāng)商品的售價(jià)為多少元時(shí),商場(chǎng)每天獲得的總利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC的內(nèi)心為I,外心為O
(1)試找出∠A與∠BOC,∠A與∠BIC的數(shù)量關(guān)系
(2)由(1)題的結(jié)論寫(xiě)出∠BOC與∠BIC的關(guān)系
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com