種植草莓大戶張華現(xiàn)有22噸草莓等售,現(xiàn)有兩種銷售渠道:一是運(yùn)往省城直接批發(fā)給零售商;二是在本地市場零售.經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見下表:
銷售渠道 | 每日銷量(噸) | 每噸所獲純利潤(元) |
省城批發(fā) | 4 | 1200 |
本地零售 | 1 | 2000 |
(1) y=﹣800x+44000;(2) 16≤x≤22;(3) 省城批發(fā)16噸,本地零售6噸時,獲純利最大,最大利潤是31200元.
解析試題分析:(1)根據(jù)利潤的關(guān)系,可得函數(shù)解析式;
(2)根據(jù)銷售時間的關(guān)系,可得不等式組,根據(jù)解不等式組,可得答案;
(3)根據(jù)一次函數(shù)的性質(zhì),可得答案.
試題解析:(1)函數(shù)解析式為y=1200x+(22﹣x)×2000,
即y=﹣800x+44000;
(2)由銷售時間,得,
解得16≤x≤22;
(3)y=﹣800x+44000,
k=﹣800<0,y隨x的增大而減小,
當(dāng)x=16時,y最大=﹣800×16+44000=31200.
答:省城批發(fā)16噸,本地零售6噸時,獲純利最大,最大利潤是31200元.
考點:一次函數(shù)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
在一次運(yùn)輸任務(wù)中,一輛汽車將一批貨物從甲地運(yùn)往乙地,到達(dá)乙地卸貨后返回.設(shè)汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息回答下列問題:
(1)甲乙兩地的距離是 .
(2)到達(dá)乙地后卸貨用的時間是 .
(3)這輛汽車返回的速度是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系系xOy中,直線y=2x+m與y軸交于點A,與直線y=﹣x+4交于點B(3,n),P為直線y=﹣x+4上一點.
(1)求m,n的值;
(2)當(dāng)線段AP最短時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:在平面直角坐標(biāo)系中,點A、B分別在x軸正半軸上,且線段OA、OB(OA<OB)的長分別等于方程x2﹣5x+4=0的兩個根,點C在y軸正半軸上,且OB=2OC.
(1)試確定直線BC的解析式;
(2)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
直線y=和x軸,y軸分別交于點E,F(xiàn),點A是線段EF上一動點(不與點E重合),過點A作x軸垂線,垂足是點B,以AB為邊向右作矩形ABCD,AB:BC=3:4。
(1)當(dāng)點A與點F重合時,求證:四邊形ADBE是平行四邊形,并求直線DE的表達(dá)式;
(2)當(dāng)點A不與點F重合時,四邊形ADBE仍然是平行四邊形?說明理由,此時你還能求出直線DE的表達(dá)式嗎?若能,請你求出來。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,點A(1,6)和點M(m,n)都在反比例函數(shù)y=(x>0)的圖象上,
(1)k的值為 ;
(2)當(dāng)m=3,求直線AM的解析式;
(3)當(dāng)m>1時,過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:計算題
已知直線與軸交于點A(-4,0),與軸交于點B.
【小題1】求b的值
【小題2】把△AOB繞原點O順時針旋轉(zhuǎn)90°后,點A落在軸的處,點B若在軸的處;
①求直線的函數(shù)關(guān)系式;
②設(shè)直線AB與直線交于點C,矩形PQMN是△的內(nèi)接矩形,其中點P,Q在線段上,點M在線段上,點N在線段AC上.若矩形PQMN的兩條鄰邊的比為1∶2,試求矩形PQMN的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com