【題目】如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當BD=6,AB=10時,求⊙O的半徑.
【答案】
(1)解:AC與⊙O相切.理由如下:
連結(jié)OE,如圖,
∵BE平分∠ABD,
∴∠OBE=∠DBO,
∵OE=OB,
∴∠OBE=∠OEB,
∴∠OBE=∠DBO,
∴OE∥BD,
∵AB=BC,D是AC中點,
∴BD⊥AC,
∴OE⊥AC,
∴AC與⊙O相切;
(2)解:設(shè)⊙O半徑為r,則AO=10﹣r,
由(1)知,OE∥BD,
∴△AOE∽△ABD,
∴ ,即 ,
∴r= ,
即⊙O半徑是 .
【解析】(1)根據(jù)等腰三角形的性質(zhì),得到對邊對等角,由角平分線的定義得到內(nèi)錯角相等,得到OE∥BD,根據(jù)等腰三角形的三線合一得到BD⊥AC,得到AC與⊙O相切;(2)根據(jù)(1)知,OE∥BD,得到△AOE∽△ABD,得到比例,求出⊙O的半徑.
【考點精析】本題主要考查了切線的判定定理和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)銷一種綠茶,每千克成本為50元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量w(千克)隨銷售單價x(元/千克)的變化而變化,具體關(guān)系式為 ,且物價部門規(guī)定這種綠茶的銷售單價不得高于90元/千克.設(shè)這種綠茶在這段時間內(nèi)的銷售利潤為y(元),解答下列問題:
(1)求y與x的關(guān)系式.
(2)當x取何值時,y的值最大?
(3)如果公司想要在這段時間內(nèi)獲得 元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,點P、Q在DC邊上,且PQ= DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3.
(1)該二次函數(shù)圖象的對稱軸為;
(2)判斷該函數(shù)與x軸交點的個數(shù),并說明理由;
(3)下列說法正確的是(填寫所有正確說法的序號)
①頂點坐標為(1,﹣4);
②當y>0時,﹣1<x<3;
③在同一平面直角坐標系內(nèi),該函數(shù)圖象與函數(shù)y=﹣x2+2x+3的圖象關(guān)于x軸對稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明:
已知:如圖,點D,E,F分別在線段AB,BC,AC上,連接DE、EF,DM平分∠ADE交EF于點M,∠1+∠2=180°.
求證: ∠B =∠BED.
證明:∵∠1+∠2=180°(已知),
又∵∠1+∠BEM=180°( ),
∴∠2=∠BEM( ),
∴DM∥______(_________________________________________).
∴∠ADM =∠B(_________________________________________),
∠MDE =∠BED(_______________________________________).
又∵DM平分∠ADE (已知),
∴∠ADM =∠MDE ( ).
∴∠B =∠BED(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面的圖象反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后又原路返回,順路到文具店去買筆,然后散步回家.其中x表示時間,y表示張強離家的距離.根據(jù)圖象回答:
(1)體育場離張強家的多遠?張強從家到體育場用了多長時間?
(2)體育場離文具店多遠?
(3)張強在文具店逗留了多久?
(4)計算張強從文具店回家的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________________ ),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com