【題目】如圖,矩形ABCD中,BC=2AB=4,AE平分∠BAD交邊BC于點(diǎn)E,∠AEC的分線交AD于點(diǎn)F,以點(diǎn)D為圓心,DF為半徑畫圓弧交邊CD于點(diǎn)G,求弧FG的長
【答案】解:∵四邊形ABCD是矩形,
∴∠BAD=∠B=∠D=90°,AD=BC=4,AD∥BC,
∵AE平分∠BAD交邊BC于點(diǎn)E,
∴∠BAE=∠EAD=45°,
∴△ABE是等腰直角三角形,
∴AB=BE=2,AE= AB=2
∵∠AEC的分線交AD于點(diǎn)F,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠CEF=∠AFE,
∴∠AEF=∠AFE,
∴AF=AE=2
∴DF=AD-AF=4-2
∴弧FG的長為:
故答案為
【解析】本題考查了矩形的性質(zhì),角平分線定義,等腰直角三角形的判定與性質(zhì),等腰三角形的判定,平行線的性質(zhì),弧長的計(jì)算,求出DF=4-2 是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣6mx+5與y軸的交點(diǎn)為A,與x軸的正半軸分別交于點(diǎn)B(b,0),C(c,0).
(1)當(dāng)b=1時(shí),求拋物線相應(yīng)的函數(shù)表達(dá)式;
(2)當(dāng)b=1時(shí),如圖,E(t,0)是線段BC上的一動(dòng)點(diǎn),過點(diǎn)E作平行于y軸的直線l與拋物線的交點(diǎn)為P.求△APC面積的最大值;
(3)當(dāng)c=b+n時(shí),且n為正整數(shù),線段BC(包括端點(diǎn))上有且只有五個(gè)點(diǎn)的橫坐標(biāo)是整數(shù),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠B=135°,則弧AC的長( ).
A.2π
B.π
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,大、中、小三個(gè)圓圈分別表示有理數(shù)集合、整數(shù)集合、自然數(shù)集合,把這三個(gè)圓圈如圖②所示疊放在一起,形成大圓環(huán)A和小圓環(huán)B,則小圓環(huán)B表示的是負(fù)整數(shù)集合.請你把-20,0,3.14,-,5填入圖②相應(yīng)的位置中,并寫出大圓環(huán)A所表示集合的名稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了表示對老師的敬意,張昊同學(xué)特地做了兩張大小不同的正方形的畫送給老師,其中一張面積為800 cm2,另一張面積為450 cm2.他想:如果再用金色細(xì)彩帶把畫的邊鑲上會更漂亮.他手上現(xiàn)有1.2 m長的金色細(xì)彩帶.請你幫他算一算,他的金色細(xì)彩帶夠用嗎?如果不夠用,還需買多少厘米的金色細(xì)彩帶?(≈1.414,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB延長線上一點(diǎn),D為線段BC上一點(diǎn),CD=2BD,E為線段AC上一點(diǎn),CE=2AE
(1)若AB=18,BC=21,求DE的長;
(2)若AB=a,求DE的長;(用含a的代數(shù)式表示)
(3)若圖中所有線段的長度之和是線段AD長度的7倍,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,邊長為2的正五邊形ABCDE內(nèi)接于⊙O,AB、DC的延長線交于點(diǎn)F,過點(diǎn)E作EG∥CB交BA的延長線于點(diǎn)G.
(1)求證: ;
(2)證明:EG與⊙O相切,并求AG、BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的長為6,寬為3,點(diǎn)O1為矩形的中心,⊙O2的半徑為1,O1O2⊥AB于點(diǎn)P,O1O2=6.若⊙O2繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,⊙O2與矩形的邊只有一個(gè)公共點(diǎn)的情況一共出現(xiàn)( 。
A.3次
B.4次
C.5次
D.6次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過點(diǎn)A作AD∥BC,且點(diǎn)D在點(diǎn)A的右側(cè).點(diǎn)P從點(diǎn)A出發(fā)沿射線AD方向以每秒1cm的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿射線CB方向以每秒2cm的速度運(yùn)動(dòng),在線段QC上取點(diǎn)E,使得QE =2cm,連結(jié)PE,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)若PE⊥BC,則①PE= cm,CE= (用含t的式子表示);
②求BQ的長;
(2)請問是否存在t的值,使以A,B,E,P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com