【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
【答案】(1);(2)或;(3)
【解析】
(1)先把A、B點(diǎn)坐標(biāo)代入求出m、n的值;然后將其分別代入一次函數(shù)解析式,列出關(guān)于系數(shù)k、b的方程組,通過解方程組求得它們的值即可;
(2)根據(jù)該不等式的解集即為直線在雙曲線下方時(shí)x的范圍即可寫出答案;
(3)分別過點(diǎn)A、B作AE⊥x軸,BC⊥x軸,垂足分別是E、C點(diǎn).直線AB交x軸于D點(diǎn).S△AOB=S△AOD-S△BOD,由三角形的面積公
解:(1)∵點(diǎn)A(m,6),B(3,n)兩點(diǎn)在反比例函數(shù)的圖象上,
∴6m=3n=6,
∴m=1,n=2,
∴A(1,6),B(3,2).
又∵點(diǎn)A(m,6),B(3,n)兩點(diǎn)在一次函數(shù)y=kx+b的圖象上,
∴.
解得,
則該一次函數(shù)的解析式為:y=-2x+8;
(2)根據(jù)圖象可知使kx+b<成立的x的取值范圍是0<x<1或x>3;
(3)如圖,分別過點(diǎn)A、B作AE⊥x軸,BC⊥x軸,垂足分別是E、C點(diǎn).直線AB交x軸于D點(diǎn).
令-2x+8=0,得x=4,即D(4,0).
∵A(1,6),B(3,2),
∴AE=6,BC=2,
∴S△AOB=S△AOD-S△BOD=×4×6-×4×2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為D.
(1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)若該拋物線經(jīng)過點(diǎn)A(1,m),求m的值;
(3)在(2)的條件下,拋物線與x軸是否有交點(diǎn),若有,求出交點(diǎn)坐標(biāo),若沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, 為邊的中點(diǎn). 是上一點(diǎn),⊙與相切于點(diǎn),且與、分別相交于點(diǎn)、.連接交于點(diǎn).
()求證: .
()已知, .當(dāng)是⊙的直徑時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車行駛時(shí)的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;
(2)求關(guān)于的函數(shù)關(guān)系式,并計(jì)算該汽車在剩余油量5升時(shí),已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行“數(shù)學(xué)知識(shí)競(jìng)賽”活動(dòng),班長安排小明購買獎(jiǎng)品,下面兩圖是小明買回獎(jiǎng)品時(shí)與班長的對(duì)話情境:
請(qǐng)根據(jù)上面的信息,解決問題:
(1)試計(jì)算兩種筆記本各買了多少本?
(2)請(qǐng)你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形中,,,對(duì)角線與交于點(diǎn),平分.
(1)求證:四邊形是菱形;
(2)如圖2,在(1)的條件下,過點(diǎn)作交的延長線于點(diǎn),連接.若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為線段BC的延長線上一點(diǎn),且DB=DA,BE⊥AD于點(diǎn)E,取BE的中點(diǎn)F,連接AF.
(1)若AC=,AE=,求BE的長;
(2)在(1)的條件下,如果∠D=45°,求△ABD的面積.
(3)若∠BAC=∠DAF,求證:2AF=AD;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,CE是∠DCB的平分線,F是AB的中點(diǎn),AB=6,BC=5,則AE:EF:FB為( 。
A. 1:2:3 B. 2:1:3 C. 3:2:1 D. 3:1:2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com