【題目】如圖,在中,,為邊上的中線,點在上,以點為圓心,長為半徑畫弧,交的延長線于點,點在上,且,連接.
(1)依題意補全圖形;
(2)求證:;
(3)若平分,則與滿足的等量關系為 .
【答案】(1)見詳解;(2)證明見詳解;(3)∠BAE+∠ABE=60°.
【解析】
(1)根據(jù)相關作圖技巧,依題意補全圖形即可;
(2)由等腰三角形的性質(zhì)得出∠ABE=∠AFG,∠EAB=∠GAF,證明△EAB≌△GAF(ASA),得出BE=FG,證明△EAB≌△EAC(SAS),得出BE=CE,即可得出結(jié)論;
(3)由(2)得∠CAE=∠BAE,△EAB≌△GAF,△EAB≌△EAC,由全等三角形的性質(zhì)得出AE=AG,∠ABE=∠ACE,由等腰三角形的性質(zhì)得出∠AEG=∠AGE,證出∠AEG=∠EAG=∠AGE,得出△AGE是等邊三角形,由等邊三角形的性質(zhì)得出∠AEG=60°,由三角形的外角性質(zhì)即可得出結(jié)論.
解:(1)依題意補全圖形,如圖所示:
(2)證明:由題意得:AB=AC=AF,
∴∠ABE=∠AFG,
∵∠EAC+∠CAG=∠EAG,∠CAG+∠GAF=∠CAF,∠EAG=∠CAF,
∴∠EAC=∠GAF,
∵AB=AC,AD為邊BC上的中線,
∴∠EAC=∠EAB,
∴∠EAB=∠GAF,
在△EAB和△GAF中,,
∴△EAB≌△GAF(ASA),
∴BE=FG,
在△EAB和△EAC中,,
∴△EAB≌△EAC(SAS),
∴BE=CE,
∴FG=CE.
(3)由(2)得:∠CAE=∠BAE,△EAB≌△GAF,△EAB≌△EAC,
∴AE=AG,∠ABE=∠ACE,
∴∠AEG=∠AGE,
∵EF平分∠AEC,
∴∠AEG=∠CEG,
∴∠AGE=∠CEG,
∴AG∥CE,
∴∠GAC=∠ACE,
∴∠ABE=∠GAC,
∵∠AEG=∠ABE+∠BAE,∠EAG=∠EAC+∠GAC,
∴∠AEG=∠EAG=∠AGE,
∴△AGE是等邊三角形,
∴∠AEG=60°,
∴∠BAE+∠ABE=60°.
故答案為:∠BAE+∠ABE=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積是12,AB=AC,BC=3,邊AC的垂直平分線交AC于F,交AB于E.點D是BC的中點,點P是EF上的一個動點,則△PCD的周長最小值是( )
A.4B.8C.7D.9.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)作DG⊥AB交⊙O于G,垂足為F,若∠A=30°,AB=8,求弦DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,拋物線y=x2﹣2x與x軸交于O、B兩點,頂點為P,連接OP、BP,直線y=x﹣4與y軸交于點C,與x軸交于點D.
(1)寫出點B坐標;判斷△OBP的形狀;
(2)將拋物線沿對稱軸平移m個單位長度,平移的過程中交y軸于點A,分別連接CP、DP;
(i)若拋物線向下平移m個單位長度,當S△PCD= S△POC時,求平移后的拋物線的頂點坐標;
(ii)在平移過程中,試探究S△PCD和S△POD之間的數(shù)量關系,直接寫出它們之間的數(shù)量關系及對應的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,E是BC邊的中點,BF∥AC,EF∥AB,EF=4 cm.
(1)求∠F的度數(shù);
(2)求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應“書香學校,書香班級”的建設號召,平頂山市某中學積極行動,學校圖書角的新書、好書不斷增加.下面是隨機抽查該校若干名同學捐書情況統(tǒng)計圖:
請根據(jù)下列統(tǒng)計圖中的信息,解答下列問題:
(1)此次隨機調(diào)查同學所捐圖書數(shù)的中位數(shù)是 ,眾數(shù)是 ;
(2)在扇形統(tǒng)計圖中,捐2本書的人數(shù)所占的扇形圓心角是多少度?
(3)若該校有在校生1600名學生,估計該校捐4本書的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAB與△OCD是以點O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點B的坐標是(6,0),則點C的坐標是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E、F分別是AD、BC的中點,分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com