【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個(gè)陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請(qǐng)用等式表示出來: .
(3)利用(2)中結(jié)論解決下面的問題:如圖2,兩個(gè)正方形邊長分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
【答案】(1)方法1:a2+b2 ;方法2:(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)陰影部分的面積=18.5.
【解析】
(1)方法1:兩個(gè)正方形面積和,方法2:大正方形面積-兩個(gè)小長方形面積;
(2)由題意結(jié)合(1)的結(jié)果可直接得到;
(3)由陰影部分面積=正方形ABCD的面積+正方形CGFE的面積-三角形ABD的面積-三角形BGF的面積,可求陰影部分的面積.
(1)由題意可得:方法1:a2+b2 ,
方法2:(a+b)2﹣2ab;
(2)a2+b2=(a+b)2﹣2ab;
(3)∵陰影部分的面積=S正方形ABCD+S正方形CGFE﹣S△ABD﹣S△BGF
=a2+b2﹣a2﹣(a+b)b,
∴陰影部分的面積=a2+b2﹣ab= [(a+b)2﹣2ab]﹣ab=18.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,BD⊥AC于點(diǎn)D,AD=3.5cm,點(diǎn)P、Q分別為AB、AD上的兩個(gè)定點(diǎn)且BP=AQ=2cm,若在BD上有一動(dòng)點(diǎn)E使PE+QE最短,則PE+QE的最小值為_____cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)若P是第四象限內(nèi)這個(gè)二次函數(shù)的圖象上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC.
①求線段PM的最大值;
②當(dāng)△PCM是以PM為一腰的等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具用品商店銷售A、B兩種款式文具盒,已知購進(jìn)1個(gè)A款文具盒比B款文具盒便宜5元,且用300元購入A款文具盒的數(shù)量比購入B款文具盒的數(shù)量多5個(gè).
(1)購進(jìn)一個(gè)A款文具盒、一個(gè)B款文具盒各需多少元?
(2)若A款文具盒與B款文具盒的售價(jià)分別是20元和30元,現(xiàn)該文具用品商店計(jì)一劃用不超過1000元購入共計(jì)60個(gè)A、B兩種款式的文具盒,且全部售完,問如何安排進(jìn)貨才能使銷售利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)是(-6,0),B點(diǎn)是(0,8),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5個(gè)單位的速度向點(diǎn)A作勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在OB邊上以每秒4個(gè)單位的速度向點(diǎn)B作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<2),連接PQ.
(1)如1圖,設(shè)△BPQ的面積為y,求y與t的函婁關(guān)系式;
(2)如2圖,連接AQ、OP,如果AQ⊥OP,求t的值;
(3)設(shè)PQ的中點(diǎn)為D點(diǎn),則D點(diǎn)一定在直線________上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將紙片沿折疊,其中.
(1)如圖1,點(diǎn)落在邊上的點(diǎn)處,與是否平行?請(qǐng)說明理由;
(2)如圖2,點(diǎn)落在四邊形內(nèi)部的點(diǎn)處,探索與之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,以正方形的點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,其中線段在軸上,線段在軸上,其中正方形的周長為24.
(1)直接寫出,兩點(diǎn)的坐標(biāo).
(2)若與軸重合的直線以每秒1個(gè)單位長度的速度由軸向右平移,移動(dòng)至與所在的直線重合時(shí)停止.在移動(dòng)過程中直線與、交點(diǎn)分別為點(diǎn)和點(diǎn).問:運(yùn)動(dòng)多長時(shí)間時(shí),長方形的周長與長方形的周長之比為5:4.
(3)在(2)的條件下,若直線上有一點(diǎn),連接、,恰好滿足.求出的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP是∠ABC的平分線,AP⊥BP于P,連接PC,若△ABC的面積為1cm2則△PBC的面積為( ).
A. 0.4 cm2B. 0.5 cm2
C. 0.6 cm2D. 不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com