【題目】已知平行四邊形ABCD,過(guò)點(diǎn)A作BC的垂線,垂足為點(diǎn)E,且滿足AE=EC,過(guò)點(diǎn)C作AB的垂線,垂足為點(diǎn)F,交AE于點(diǎn)G,連接BG.
(1)如圖1,若AC=,CD=4,求BC的長(zhǎng)度;
(2)如圖2取AC上一點(diǎn)Q,連接EQ,在△QEC內(nèi)取一點(diǎn),連接QH,EH,過(guò)點(diǎn)H作AC的垂線,垂足為點(diǎn)P,若QH=EH,∠QEH=45°.求證:AQ=2HP.
【答案】(1)3+;(2)見解析
【解析】
(1)利用勾股定理分別求出AE,BE即可解決問(wèn)題.
(2)如圖2中,如圖2中,作EM⊥QE交QH的延長(zhǎng)線于M,連接CM.證明△ABQ≌△CEM(SAS),推出AQ=CM,再利用三角形的中位線定理解決問(wèn)題即可.
(1)解:如圖1中,
∵AE⊥BC于E,
∴∠AEC=90°,
∵AE=EC,AC=,
∴AE=EC=,
∵四邊形ABCD是平行四邊形,
∴AB=CD=4,
∵∠AEB=90°,
∴BE=,
∴BC=BE+EC=3+.
(2)證明:如圖2中,如圖2中,作EM⊥QE交QH的延長(zhǎng)線于M,連接CM.
∵QH=EH,∠QEH=45°,
∴∠QEH=∠EQH=45°,
∴∠EHQ=90°,
∵EM⊥EQ,
∴∠MEQ=90°,
∴∠EMQ=∠EQM=45°,
∴EQ=EM,
∵EH⊥QM,
∴QH=HM,
∵∠AEC=∠QEM=90°,
∴∠AEQ=∠CEM,
∵EA=EC,EQ=EM,
∴△AEQ≌△CEM(SAS),
∴AQ=CM,∠EAQ=∠ECM=45°,
∵∠ACE=45°,
∴∠ACM=90°,
∵HP⊥QC,
∴∠HPQ=∠MCP,
∴HP∥CM,
∴QP=PC,
∵QH=HM,
∴CM=2PH,
∴AQ=2PH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)的圖象相交于點(diǎn)A,并與軸交于點(diǎn)C,S△AOC=15.點(diǎn)D是線段AC上一點(diǎn),CD:AC=2:3.
(1)求的值;
(2)求點(diǎn)D的坐標(biāo);
(3)根據(jù)圖象,直接寫出當(dāng)時(shí)不等式的的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(n,﹣n )在第二象限,過(guò)點(diǎn)M的直線y=kx+b(0<k<1)分別交x軸、y軸于點(diǎn)A,B,過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,則下列點(diǎn)在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考英語(yǔ)聽力測(cè)試期間,需要杜絕考點(diǎn)周圍的噪音。如圖,點(diǎn)A是某市一高考考點(diǎn),在位于A考點(diǎn)南偏西15°方向距離125米的點(diǎn)處有一消防隊(duì)。在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即趕往救火。已知消防車的警報(bào)聲傳播半徑為100米,若消防車的警報(bào)聲對(duì)聽力測(cè)試造成影響,則消防車必須改道行駛。試問(wèn):消防車是否需要改道行駛?說(shuō)明理由.(取1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷一種成本單價(jià)為50元/件的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于80元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(如圖所示)
(I)根據(jù)圖象,求一次函數(shù)y=kx+b的解析式,并寫出自變量x的取值范圍;
(Ⅱ)該公司要想每天獲得最大的利潤(rùn),應(yīng)把銷售單價(jià)定為多少?最大利潤(rùn)值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(x0,m),Q(1,n)在二次函數(shù)y=(x+a)(x﹣a﹣1)(a≠0)的圖象上,且m<n下列結(jié)論:①該二次函數(shù)與x軸交于點(diǎn)(﹣a,0)和(a+1,0);②該二次函數(shù)的對(duì)稱軸是x=; ③該二次函數(shù)的最小值是(a+2)2; ④0<x0<1.其中正確的是_____.(填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點(diǎn)E是弦AC的中點(diǎn),連接BE,并延長(zhǎng)交半圓O于點(diǎn)D,若OB=2,OE=1,則∠CDE的度數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:三角形的角平分線是初中幾何中一條非常重要的線段,它除了具有平分角、角平分線上的點(diǎn)到角兩邊的距離相等這些性質(zhì)外,還具有以下的性質(zhì):
如圖①,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,則=.提示:過(guò)點(diǎn)C作CE∥AD交BA的延長(zhǎng)線于點(diǎn)E.
請(qǐng)根據(jù)上面的提示,寫出得到“”這一結(jié)論完整的證明過(guò)程.
結(jié)論應(yīng)用:如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=15,AD平分∠BAC交BC于點(diǎn)D.請(qǐng)直接利用“問(wèn)題探究”的結(jié)論,求線段CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com