【題目】如圖,AB是半圓O的直徑,D,E是半圓上任意兩點,連結(jié)AD,DE,AEBD相交于點C,要使ADCABD相似,可以添加一個條件.下列添加的條件其中錯誤的是( 。

A.B.C.D.

【答案】D

【解析】

利用有兩組角對應(yīng)相等的兩個三角形相似可對A進行判定;先利用等腰三角形的性質(zhì)和圓周角定理得到∠DAC=B,然后利用有兩組角對應(yīng)相等的兩個三角形相似可對B進行判定;利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對CD進行判定.

解:A、因為∠ADC=BDA,∠ACD=DAB,所以△DAC∽△DBA,所以A選項添加的條件正確;

B、由AD=DE得∠DAC=E,而∠B=E,所以∠DAC=B,加上∠ADC=BDA,所以△DAC∽△DBA,所以B選項添加的條件正確;

C、由AD2=DBCD,即ADDB=DCDA,加上∠ADC=BDA,所以△DAC∽△DBA,所以C選項添加的條件正確;

D、由ADAB=ACBD,而不能確定∠ABD=DAC,即不能確定點D為弧AE的中點,所以不能判定△DAC∽△DBA,所以D選項添加的條件錯誤.

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家庭過期藥品屬于“國家危險廢物”,處理不當將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機抽樣調(diào)査.

(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號)

在市中心某個居民區(qū)以家庭為單位隨機抽;在全市醫(yī)務(wù)工作者中以家庭為單位隨機抽取;在全市常住人口中以家庭為單位隨機抽。

(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:

m= ,n= ;

補全條形統(tǒng)計圖;

根據(jù)調(diào)査數(shù)據(jù),你認為該市市民家庭處理過期藥品最常見的方式是什么?

家庭過期藥品的正確處理方式是送回收點,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點,與y軸交于點C.若tanABC=3,一元二次方程ax2+bx+c=0的兩根為﹣8、2

1)求二次函數(shù)的解析式;

2)直線l繞點AAB為起始位置順時針旋轉(zhuǎn)到AC位置停止,l與線段BC交于點D,PAD的中點.

①求點P的運動路程;

②如圖2,過點DDE垂直x軸于點E,作DFAC所在直線于點F,連結(jié)PEPF,在l運動過程中,∠EPF的大小是否改變?請說明理由;

3)在(2)的條件下,連結(jié)EF,求PEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點A(﹣10),B3,0),與y軸交于點C.點D是直線BC上方拋物線上一動點.

1)求拋物線的解析式;

2)如圖1,連接BD、CD,設(shè)點D的橫坐標為m,△BCD的面積為s.試求出sm的函數(shù)關(guān)系式,并求出s的最大值;

3)如圖2,設(shè)AB的中點為E,作DFBC,垂足為F,連接CDCE,是否存在點D,使得以C、D,F三點為頂點的三角形與△CEO相似?若存在,請直接寫出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出的x的取值范圍;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C30°,AB4,DF分別是AC,BC的中點,等腰直角三角形DEH的邊DE經(jīng)過點F,EHBC于點G,且DF2EF,則CG的長為( 。

A. 2B. 21C. D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家16月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是 ).

A、眾數(shù)是6 B、平均數(shù)是5 C、中位數(shù)是5 D、方差是

查看答案和解析>>

同步練習(xí)冊答案