【題目】諸暨某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件,為了迎接“五一”國際勞動節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴(kuò)大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
設(shè)每件童裝降價x元時,每天可銷售______件,每件盈利______元;用x的代數(shù)式表示
每件童裝降價多少元時,平均每天贏利1200元.
要想平均每天贏利2000元,可能嗎?請說明理由.
【答案】(1)、;;(2)、20元或10元;(3)、不能,理由見解析.
【解析】分析:(1)、根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進(jìn)價-降價,列式即可;(2)、根據(jù)總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關(guān)關(guān)系方程,判斷方程是否有實(shí)數(shù)根即可.
詳解:(1)、20+2x;40-x;
(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:
即每件童裝降價10元或20元時,平均每天盈利1200元;
(3)、(20+2x)(40-x)=2000, , ∵此方程無解, ∴不可能盈利2000元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(-2)+(-3)+5
(2)×5÷×5
(3)12-7×(-4)+8÷(-2)
(4)-14+(2-5)2-2
(5)2÷(-2)+0÷7-(-8)×(-2)
(6)(-1)5×(-5)÷[(-3)2+2×(-5)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國慶放假時,小明一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆。早上從家里出發(fā),向東走了6千米到超市買東西,然后又向東走了1.5千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里。
(1)若以家為原點(diǎn),向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來;
(2)問超市A和外公家C相距多少千米?
(3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點(diǎn)繞矩形ABCD(AB<BC)的對角線的交點(diǎn)O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn)。
⑴該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現(xiàn)的結(jié)論選擇其一說明理由。
⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由。
⑶將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點(diǎn)繞O點(diǎn)旋轉(zhuǎn)到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關(guān)系(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年12月29日,國家發(fā)改委批復(fù)了昌景黃鐵路項目可行性研究報告.該項目位于贛皖兩省,線路起自江西省南昌市南昌東站,經(jīng)上饒市、景德鎮(zhèn)市,安徽省黃山市,終至黃山北站.按照設(shè)計,行駛180千米,昌景黃高鐵列車的平均行駛速度是普通快車的1.5倍,用時比普通快車用時少20分鐘,求昌景黃高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AB=BE=2,sin∠ACD= ,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有理數(shù)a、b、c在數(shù)軸上對應(yīng)的點(diǎn)如圖所示,則下列結(jié)論正確的是( 。
A. c+b>a+b B. cb<ab C. ﹣c+a>﹣b+a D. ac>ab
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com