【題目】每年5月的第二個(gè)星期日即為母親節(jié),“父母恩深重,恩憐無歇時(shí)”,許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購(gòu)了一批康乃馨,經(jīng)分析上一年的銷售情況,發(fā)現(xiàn)這種康乃馨每天的銷售量y(支)是銷售單價(jià)x(元)的一次函數(shù),已知銷售單價(jià)為7元/支時(shí),銷售量為16支;銷售單價(jià)為8元/支時(shí),銷售量為14支.
(1)求這種康乃馨每天的銷售量y(支)關(guān)于銷售單價(jià)x(元/支)的一次函數(shù)解析式;
(2)若按去年方式銷售,已知今年這種康乃馨的進(jìn)價(jià)是每支5元,商家若想每天獲得42元的利潤(rùn),銷售單價(jià)要定為多少元?
(3)在(2)的條件下,當(dāng)銷售單價(jià)x為何值時(shí),花店銷售這種康乃馨每天獲得的利潤(rùn)最大?并求出獲得的最大利潤(rùn).
【答案】(1)y=﹣2x+30;(2)8元或12元;(3)10元,50元
【解析】
(1)根據(jù)銷售單價(jià)為7元/支時(shí),銷售量為16支,銷售單價(jià)為8元/支時(shí),銷售量為14支.即可求出一次函數(shù)解析式;
(2)根據(jù)銷售利潤(rùn)=單件利潤(rùn)×銷售量,列出一元二次方程求解即可;
(3)根據(jù)銷售問題關(guān)系式可得二次函數(shù),并求頂點(diǎn)坐標(biāo),即可得結(jié)論.
解:(1)設(shè)每天的銷售量y(支)是銷售單價(jià)x(元)的一次函數(shù)為y=kx+b,
∵銷售單價(jià)為7元/支時(shí),銷售量為16支;銷售單價(jià)為8元/支時(shí),銷售量為14支.
∴,
解得,
所以y與x的函數(shù)解析式為y=﹣2x+30.
答:這種康乃馨每天的銷售量y(支)關(guān)于銷售單價(jià)x(元/支)的一次函數(shù)解析式為y=﹣2x+30;
(2)設(shè)商家若想每天獲得42元的利潤(rùn),銷售單價(jià)要定為x元,根據(jù)題意,得
(x﹣5)(﹣2x+30)=42
整理,得x2﹣20x+96=0
解得x1=8,x2=12.
答:商家若想每天獲得42元的利潤(rùn),銷售單價(jià)要定為8元或12元.
(3)設(shè)花店銷售這種康乃馨每天獲得的利潤(rùn)為w元,根據(jù)題意,得
w=(x﹣5)(﹣2x+30)
=﹣2x2+40x﹣150
=﹣2(x﹣10)2+50
∵﹣2<0,當(dāng)x=10時(shí),
w有最大值,最大值為50.
答:當(dāng)銷售單價(jià)10元時(shí),花店銷售這種康乃馨每天獲得的利潤(rùn)最大,最大利潤(rùn)為50元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.
下列判斷:
①當(dāng)x>0時(shí),y1>y2;
②當(dāng)x<0時(shí),x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是以BC為直徑的⊙O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作⊙O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P,且FG=FB=3.
(1)求證:BF=EF;
(2)求tanP;
(3)求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王某月手機(jī)話費(fèi)中的各項(xiàng)費(fèi)用統(tǒng)計(jì)情況見下列圖表,請(qǐng)你根據(jù)圖表信息完成下列各題:
項(xiàng)目 | 月功能費(fèi) | 基本話費(fèi) | 長(zhǎng)途話費(fèi) | 短信費(fèi) |
金額/元 | 5 | ▲ | ▲ | 25 |
(1)該月小王手機(jī)話費(fèi)共有多少元?
(2)扇形統(tǒng)計(jì)圖中,表示短信費(fèi)的扇形的圓心角為多少度?
(3)請(qǐng)將表格補(bǔ)充完整;
(4)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測(cè)得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(,,為常數(shù),且)中的與的部分對(duì)應(yīng)值如下表:
以下結(jié)論:
①二次函數(shù)有最小值為;
②當(dāng)時(shí),隨的增大而增大;
③二次函數(shù)的圖象與軸只有一個(gè)交點(diǎn);
④當(dāng)時(shí),.
其中正確的結(jié)論有( )個(gè)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),上述結(jié)論是否成立,并說明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=﹣在第二象限內(nèi)的圖象相交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B,與y軸的負(fù)半軸交于點(diǎn)C.
(1)求∠BCO的度數(shù);
(2)若y軸上一點(diǎn)M的縱坐標(biāo)是4,且AM=BM,求點(diǎn)A的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)P在y軸上,點(diǎn)Q是平面直角坐標(biāo)系中的一點(diǎn),當(dāng)以點(diǎn)A、M、P、Q為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣1,4),對(duì)稱軸交x軸于點(diǎn)F.
(1)請(qǐng)直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點(diǎn)D是拋物線上一動(dòng)點(diǎn),它的橫坐標(biāo)為m,且﹣3<m<﹣1,過點(diǎn)D作DK⊥x軸于點(diǎn)K,DK分別交線段AE、AC于點(diǎn)G、H.在點(diǎn)D的運(yùn)動(dòng)過程中,
①DG、GH、HK這三條線段能否相等?若相等,請(qǐng)求出點(diǎn)D的坐標(biāo);若不相等,請(qǐng)說明理由;
②在①的條件下,判斷CG與AE的數(shù)量關(guān)系,并直接寫出結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com