【題目】我們定義:如圖1,在△ABC中,把AB繞點(diǎn)A按順時針方向旋轉(zhuǎn)α(0°<α<180°)得到AB′,把AC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)β得到AC′,連接B′C′,當(dāng)α+β=180°時,我們稱△AB′C′是△ABC的“旋補(bǔ)三角形”,△AB′C′邊B′C′上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
(1)特例感知:在圖2、圖3中,△AB′C′是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.
①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD=______BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為______.
(2)精確作圖:如圖4,已知在四邊形ABCD內(nèi)部存在點(diǎn)P,使得△PDC是△PAB的“旋補(bǔ)三角形”(點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)A,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)B),請用直尺和圓規(guī)作出點(diǎn)P(要求:保留作圖痕跡,不寫作法和證明)
(3)猜想論證:在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
【答案】(1)①,②4;(2)見解析;(3)AD=BC.
【解析】
(1)①根據(jù)含30°直角三角形的性質(zhì)解答;②證明△AB′C′≌△ABC,根據(jù)全等三角形的性質(zhì)得到B′C′=BC,根據(jù)直角三角形的性質(zhì)計(jì)算;
(2)根據(jù)線段垂直平分線的性質(zhì)、利用尺規(guī)作圖作出點(diǎn)P;
(3)證明四邊形AB′EC′是平行四邊形,得到B′E=AC′,∠B′AC′+∠AB′E=180°,根據(jù)全等三角形的性質(zhì)得到AE=BC,得到答案.
解:(1)①∵△ABC是等邊三角形,
∴AB=AC=BC,∠BAC=60°,
∵△AB′C′是△ABC的“旋補(bǔ)三角形”,
∴∠B′AC′=120°,AB=AB′,AC=AC′,
∴AB′=AC′,
∴∠AB′D=30°,
∴AD=AB′,
∴AD=BC,
故答案為:;
②∵△AB′C′是△ABC的“旋補(bǔ)三角形”,
∴∠B′AC′=∠BAC=90°,AB=AB′,AC=AC′,
在△AB′C′和△ABC中,
,
∴△AB′C′≌△ABC(SAS)
∴B′C′=BC=8,
∵∠B′AC′=90°,AD是△ABC的“旋補(bǔ)中線”,
∴AD=B′C′=4,
故答案為:4;
(2)如圖4,作線段AD、BC的垂直平分線,交點(diǎn)即為點(diǎn)P,
∴點(diǎn)P即為所作;
(3)AD=BC,
證明:如圖1,延長AD到E,使得DE=AD,連接B′E、C′E,
∵AD是△AB′C’的中線,
∴B′D=C′D,
∵DE=AD,
∴四邊形AB′EC′是平行四邊形,
∴B′E=AC′,∠B′AC′+∠AB′E=180°,
∵α+β=180°,
∴∠B′AC′+∠BAC=180°,
∴∠EB′A=∠BAC,
在△EB′A和△CAB中,
∴△EB′A≌△CAB(SAS),
∴AE=BC,
∴AD=BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點(diǎn)O,連接OC,已知AC=4,OC=7,則另一條直角邊BC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長線相交于點(diǎn)H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對稱的△A1B2C2.
(2)點(diǎn)B1的坐標(biāo)為 ,點(diǎn)C2的坐標(biāo)為 .
(3)請直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo):
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,在內(nèi)并排不重疊放入邊長為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個正方形各有一個頂點(diǎn)分別在AC、BC上,依次這樣擺放上去,則最多能擺放 個小正方形紙片.
A. 14個 B. 15個 C. 16個 D. 17個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)A(0,1)、B(,0).
連接AB,以A為圓心,以AB為半徑畫弧,交y軸于點(diǎn)P1;
連接BP1,以B為圓心,以BP1為半徑畫弧,交x軸于點(diǎn)P2;
連接P1P2,以P1為圓心,以P1P2為半徑畫弧,交y軸于點(diǎn)P3;
按照這樣的方式不斷在坐標(biāo)軸上確定點(diǎn)Pn的位置,那么點(diǎn)P6的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com