【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.

(1)求證:AB與⊙O相切;
(2)若等邊三角形ABC的邊長是4,求線段BF的長?

【答案】
(1)

證明:過點O作OM⊥AB,垂足是M.

∵⊙O與AC相切于點D.

∴OD⊥AC,

∴∠ADO=∠AMO=90°.

∵△ABC是等邊三角形,

∴∠DAO=∠NAO,

∴OM=OD.

∴AB與⊙O相切;


(2)

解:過點O作ON⊥BE,垂足是N,連接OF.

∵O是BC的中點,

∴OB=2.

在直角△OBM中,∠MBO=60°,

∴OM=OBsin60°=,BM=OBcos60°=1.

∵BE⊥AB,

∴四邊形OMBN是矩形.

∴ON=BM=1,BN=OM=

∵OF=OM=,

由勾股定理得NF=

∴BF=BN+NF=+


【解析】(1)過點O作OM⊥AB,垂足是M,證明OM等于圓的半徑OD即可;
(2)過點O作ON⊥BE,垂足是N,連接OF,則四邊形OMBN是矩形,在直角△OBM利用三角函數(shù)求得OM和BM的長,則BN和ON即可求得,在直角△ONF中利用勾股定理求得NF,則BF即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫下表:

蔬菜的批發(fā)量(千克)

25

60

75

90

所付的金額(元)

125

   

300

   


(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;

(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價不變,那么零售價定為多少時,該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△OA1C1 , Rt△OA2C2 , Rt△OA3C3 , Rt△OA4C4…的斜邊都在坐標(biāo)軸上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4…=30°.若點A1的坐標(biāo)為(3,0),OA1=OC2 , OA2=OC3 , OA3=OC4…,則依次規(guī)律,點A2016的縱坐標(biāo)為( 。

A.0
B.﹣3×( 2015
C.(2 2016
D.3×( 2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點D,E分別是邊BC,AC的中點,連接DE,AD,點F在BA的延長線上,且AF=AB,連接EF,判斷四邊形ADEF的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP、CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是( 。

A.60°
B.65°
C.55°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是ABCD的邊AD的中點,連接CE交BD于點F,如果SDEF=a,那么SBCF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,EF、GH過點O,且點E、H在邊AB上,點G、F在邊CD上,向ABCD內(nèi)部投擲飛鏢(每次均落在ABCD內(nèi),且落在ABCD內(nèi)任何一點的機(jī)會均等)恰好落在陰影區(qū)域的概率為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, , 連接ED、BD,延長AE交BD的延長線于點M,過點D作⊙O的切線交AB的延長線于點C.

(1)若OA=CD=,求陰影部分的面積;
(2)求證:DE=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.

(Ⅰ)證明:AD⊥PB;
(Ⅱ)求三棱錐C﹣PAB的高.

查看答案和解析>>

同步練習(xí)冊答案