銳角三角函數(shù)的定義.割補(bǔ)法求圖形的面積.熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式.相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.[題型]解答題[結(jié)束]23[題目]如圖(1).在平面直角坐標(biāo)系中.點(diǎn)A.Rt△CDE中.∠CDE=90°.CD=4.DE=4.直角邊CD在y軸上.且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng).當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問題:.當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí).設(shè)CE交AB于點(diǎn)M.求∠BME的度數(shù)..在Rt△CDE的運(yùn)動(dòng)過程中.當(dāng)CE經(jīng)過點(diǎn)B時(shí).求BC的長(zhǎng).(3)在Rt△CDE的運(yùn)動(dòng)過程中.設(shè)AC=h.△OAB與△CDE的重疊部分的面積為S.請(qǐng)寫出S與h之間的函數(shù)關(guān)系式.并求出面積S的最大值.">
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;
(2)過點(diǎn)F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據(jù)S=S△BCE-S△BFE,求S與m之間的函數(shù)關(guān)系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數(shù)的表達(dá)式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問題:
(1)如圖(2),當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運(yùn)動(dòng)過程中,當(dāng)CE經(jīng)過點(diǎn)B時(shí),求BC的長(zhǎng).
(3)在Rt△CDE的運(yùn)動(dòng)過程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請(qǐng)寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.
【答案】(1)∠BME=15°;
(2BC=4;
(3)h≤2時(shí),S=﹣h2+4h+8,
當(dāng)h≥2時(shí),S=18﹣3h.
【解析】
試題分析:(1)如圖2,由對(duì)頂角的定義知,∠BME=∠CMA,要求∠BME的度數(shù),需先求出∠CMA的度數(shù).根據(jù)三角形外角的定理進(jìn)行解答即可;
(2)如圖3,由已知可知∠OBC=∠DEC=30°,又OB=6,通過解直角△BOC就可求出BC的長(zhǎng)度;
(3)需要分類討論:①h≤2時(shí),如圖4,作MN⊥y軸交y軸于點(diǎn)N,作MF⊥DE交DE于點(diǎn)F,S=S△EDC﹣S△EFM;②當(dāng)h≥2時(shí),如圖3,S=S△OBC.
試題解析:解:(1)如圖2,
∵在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).
∴OA=OB,
∴∠OAB=45°,
∵∠CDE=90°,CD=4,DE=4,
∴∠OCE=60°,
∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,
∴∠BME=∠CMA=15°;
如圖3,
∵∠CDE=90°,CD=4,DE=4,
∴∠OBC=∠DEC=30°,
∵OB=6,
∴BC=4;
(3)①h≤2時(shí),如圖4,作MN⊥y軸交y軸于點(diǎn)N,作MF⊥DE交DE于點(diǎn)F,
∵CD=4,DE=4,AC=h,AN=NM,
∴CN=4﹣FM,AN=MN=4+h﹣FM,
∵△CMN∽△CED,
∴,
∴,
解得FM=4﹣,
∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,
②如圖3,當(dāng)h≥2時(shí),
S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可繞點(diǎn)B旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過程中直線CC′和AA′相交于點(diǎn)D.
(1)如圖1所示,當(dāng)點(diǎn)C′在AB邊上時(shí),判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將Rt△A′BC′由圖1的位置旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)將Rt△A′BC′由圖1的位置按順時(shí)針方向旋轉(zhuǎn)α角(0°≤α≤120°),當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),請(qǐng)直接寫出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)軸上兩點(diǎn)分別對(duì)應(yīng)實(shí)數(shù),則兩點(diǎn)之間的距離記作,且.已知點(diǎn)在數(shù)軸上對(duì)應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對(duì)應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對(duì)應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對(duì)應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對(duì)應(yīng)數(shù)字.根據(jù)信息完成下列各題:
(1)=_____________.
(2)若數(shù)軸上點(diǎn)對(duì)應(yīng)實(shí)數(shù),則
①當(dāng)時(shí)=_____________;
②當(dāng)取最小值時(shí),的取值范圍為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長(zhǎng)是________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級(jí)學(xué)生的視力情況,對(duì)八年級(jí)的學(xué)生進(jìn)行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進(jìn)行統(tǒng)計(jì)整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)在頻數(shù)分布表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,O,B三點(diǎn)在同一條直線上,OD平分∠AOC,OE平分∠BOC.
(1)若∠BOC=62°,求∠DOE的度數(shù);
(2)若∠BOC=α,求∠DOE的度數(shù);
(3)通過(1)(2)的計(jì)算,你能總結(jié)出什么結(jié)論,直接簡(jiǎn)寫出來,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù) 的圖象與 、 軸分別交于點(diǎn) 、 ,直線 經(jīng)過 上的三分之一點(diǎn) ,且交 軸的負(fù)半軸于點(diǎn) ,如果 ,求直線 的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共1200件,這兩種商品的進(jìn)價(jià),售價(jià)如下表:
進(jìn)價(jià)(元/件) | 售價(jià)(元/件) | |
甲 | 25 | 30 |
乙 | 45 | 60 |
(1)超市如何進(jìn)貨,進(jìn)貨款恰好為46000元;
(2)為確保乙商品暢銷,在(1)的條件下,商家決定對(duì)乙商品進(jìn)行打折出售,且全部售完后,乙商品的利潤(rùn)率為20%,請(qǐng)問乙商品需打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點(diǎn)上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長(zhǎng)度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com