如圖是一張等腰直角三角形彩色紙,AC=BC=40 cm.將斜邊上的高CD四等份,然后裁出3張寬度相等的紙條,再把這些紙條剪成面積最大的長方形,求這三張長方形紙條長分別是多少?

答案:
解析:


提示:

由于三張紙條是等腰梯形,要把它剪成面積最大的長方形,則其長一定是較短的底,因而必須求出EF、GH和MN的長,求這三條線段的長可以先求出AB的長,然后用相似三角形中對應邊比等于對應高的比,分別求出EF、GH、MN的長.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4.將紙片的直角部分翻折,使點C落在精英家教網AB邊上,記為D點,AE為折痕,E在y軸上.
(1)在如圖所示的直角坐標系中,求E點的坐標及AE的長.
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關系式,當t取何值時,S有最大值?最大值是多少?
(3)當t(0<t<3)為何值時,A、D、M三點構成等腰三角形?并求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC是一張等腰直角三角形紙板,∠B=90°,AB=BC=1.
(1)要在這張紙板上剪出一個正方形,使這個正方形的四個頂點都在△ABC的邊上.小林設計出了一種剪法,如圖1所示.請你再設計出一種不同于圖1的剪法,并在圖2中畫出來.
(2)若按照小林設計的圖1所示的剪法來進行裁剪,記圖1為第一次裁剪,得到1個正方形,將它的面積記為S1,則S1=
1
4
1
4
;在余下的2個三角形中還按照小林設計的剪法進行第二次裁剪(如圖3),得到2個新的正方形,將此次所得2個正方形的面積的和記為S2,則S2=
1
8
1
8
;在余下的4個三角形中再按照小林設計的剪法進行第三次裁剪(如圖4),得到4個新的正方形,將此次所得4個正方形的面積的和記為S3;按照同樣的方法繼續(xù)操作下去…,第n次裁剪得到
2n-1
2n-1
個新的正方形,它們的面積的和Sn=
1
2n+1
1
2n+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。
(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關系式,當t取何值時,S有最大值?最大值是多少?
(3)當t(0<t<3)為何值時,A、D、M三點構成等腰三角形?并求出點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年福建省永春縣九年級上學期期末檢測數(shù)學試卷(解析版) 題型:選擇題

如圖,將一張等腰直角三角形紙片沿虛線剪成甲、乙、丙三塊,其中甲、丙為直角梯形,乙為等腰直角三角形.根據圖中標示的邊長數(shù)據,比較甲、乙、丙的面積大小,下列判斷正確的是(。

A.甲>乙>丙;?? B.乙>丙>甲;?? C.丙>乙>甲;?? D.丙>甲>乙.

 

查看答案和解析>>

同步練習冊答案