【題目】(12分)如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0.
(1)求拋物線(xiàn)的解析式.
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線(xiàn)上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2-4x-12;(2)①S=-t2+6t,0<t<6;②拋物線(xiàn)上存在點(diǎn)R(3,-18),使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形.
【解析】試題分析:(1)根據(jù)矩形的對(duì)邊相等求出點(diǎn)A、B的坐標(biāo),把兩點(diǎn)的坐標(biāo)代入拋物線(xiàn)解析式,再聯(lián)立18a+c=0,解關(guān)于a、b、c的三元一次方程組,然后即可得到拋物線(xiàn)的關(guān)系式;
(2)①根據(jù)速度的不同,表示出BP、BQ的長(zhǎng)度,然后利用三角形的面積公式列式整理即可得到S與t的關(guān)系式,根據(jù)速度分別求出點(diǎn)P與點(diǎn)Q的運(yùn)動(dòng)時(shí)間即可得到t取值范圍;
②先根據(jù)二次函數(shù)的最大值問(wèn)題求出S取最大值時(shí)的t的值,從而求出點(diǎn)P與點(diǎn)Q的坐標(biāo),再根據(jù)平行四邊形的對(duì)邊平行且相等,分QR與PB是對(duì)邊時(shí),PR與QB是對(duì)邊時(shí),兩種情況求出點(diǎn)Q的坐標(biāo),然后代入拋物線(xiàn)解析式進(jìn)行驗(yàn)證,如果點(diǎn)Q在拋物線(xiàn)上,則存在,否則不存在.
試題解析:(1)∵矩形OABC邊長(zhǎng)OA、OC分別為12cm和6cm,
∴點(diǎn)A、B的坐標(biāo)分別為A(0,-12),B(6,-12),
又∵拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0,
∴,
解得,
∴拋物線(xiàn)解析式為y=x2-4x-12;
(2)①根據(jù)題意,PB=AB-AP=6-t,BQ=2t,
所以,S=PBBQ=(6-t)×2t=-t2+6t,
即S=-t2+6t,
點(diǎn)P運(yùn)動(dòng)的時(shí)間為6÷1=6秒,
點(diǎn)Q運(yùn)動(dòng)的時(shí)間為12÷2=6秒,
所以,t的取值范圍是0<t<6;
②拋物線(xiàn)上存在點(diǎn)R(3,-18),使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形.
理由如下:∵S=-t2+6t=-(t-3)2+9,
∴當(dāng)t=3秒時(shí),S取最大值,
此時(shí),PB=AB-AP=6-t=6-3=3,
BQ=2t=2×3=6,
所以,要使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形,
(i)當(dāng)QR與PB是對(duì)邊時(shí),點(diǎn)R的橫坐標(biāo)是6+3=9,縱坐標(biāo)是-(12-6)=-6,
所以點(diǎn)R的坐標(biāo)為(9,-6),
此時(shí)×92-4×9-12=6≠-6,
所以點(diǎn)R不在拋物線(xiàn)上,
(ii)當(dāng)PR與QB是對(duì)邊時(shí),點(diǎn)R的橫坐標(biāo)是3,縱坐標(biāo)是-(12+6)=-18,
所以點(diǎn)R的坐標(biāo)是(3,-18),
此時(shí), ×32-4×3-12=-18,
所以點(diǎn)R在拋物線(xiàn)上,
綜上所述,拋物線(xiàn)上存在點(diǎn)R(3,-18),使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)AB上一點(diǎn)O,∠AOD=42°,∠BOC=34°,∠DOE=90°,OF平分∠COD,求∠FOD與∠EOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我鎮(zhèn)綠色和特色農(nóng)產(chǎn)品在市場(chǎng)上頗具競(jìng)爭(zhēng)力.外貿(mào)商胡經(jīng)理按市場(chǎng)價(jià)格10元/千克在我區(qū)收購(gòu)了6000千克蘑菇存放入冷庫(kù)中.請(qǐng)根據(jù)胡經(jīng)理提供的預(yù)測(cè)信息(如圖)幫胡經(jīng)理解決以下問(wèn)題:
(1)若胡經(jīng)理想將這批蘑菇存放x天后一次性出售, 則x天后這批蘑菇的銷(xiāo)售單價(jià)為 元, 這批蘑菇的銷(xiāo)售量是 千克;
(2)胡經(jīng)理將這批蘑菇存放多少天后,一次性出售所得的銷(xiāo)售總金額為100000元;(銷(xiāo)售總金額=銷(xiāo)售單價(jià)×銷(xiāo)售量).
(3)將這批蘑菇存放多少天后一次性出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線(xiàn)段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線(xiàn)段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線(xiàn)AB的解析式;
(2)當(dāng)t為何值時(shí),△APQ與△AOB相似?
(3)當(dāng)t為何值時(shí),△APQ的面積為個(gè)平方單位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)有四張背面圖案相同的卡片A、B、C、D,其正面分別畫(huà)有四個(gè)不同的幾何圖形(如圖).小敏將這四張卡片背面朝上洗勻摸出一張,放回洗勻再摸出一張.
(1)用樹(shù)狀圖(或列表法)表示兩次摸出卡片所有可能的結(jié)果;(卡片可用A、B、C、D表示)
(2)求摸出的兩張卡片圖形都是中心對(duì)稱(chēng)圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(2,﹣2),如果點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)是B,點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)是C,那么C點(diǎn)的坐標(biāo)是( )
A.(2,2)
B.(﹣2,2)
C.(﹣1,﹣1)
D.(﹣2,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】連接AB,直線(xiàn)AB與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,平面內(nèi)有一點(diǎn)E(3,1),直線(xiàn)BE與x軸交于點(diǎn)F.直線(xiàn)AB的解析式記作y1=kx+b,直線(xiàn)BE解析式記作y2=mx+t.求:
(1)直線(xiàn)AB的解析式△BCF的面積;
(2)當(dāng)x等于多少時(shí),kx+b>mx+t;
當(dāng)x等于多少時(shí),kx+b<mx+t;
當(dāng)x等于多少時(shí),kx+b=mx+t;
(3)在x軸上有一動(dòng)點(diǎn)H,使得△OBH為等腰三角形,求H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)已知n正整數(shù),且 ,求 的值;
(2)如圖,AB、CD交于點(diǎn)O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b,c為△ABC的三邊,化簡(jiǎn)|a+b+c|﹣|a﹣b﹣c|的結(jié)果( )
A.2b+2c
B.2b﹣2c
C.0
D.2a
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com