【題目】如圖,已知△ABC、△DCE、△FEG、△HGI是4個(gè)全等的等腰三角形,底邊BC、CE、EG、GI在同一直線(xiàn)上,且AB=2,BC=1,連接AI,交FG于點(diǎn)Q,則QI=

【答案】
【解析】解:∵△ABC、△DCE、△FEG是三個(gè)全等的等腰三角形,
∴HI=AB=2,GI=BC=1,BI=4BC=4,
= = , = ,
= ,
∵∠ABI=∠ABC,
∴△ABI∽△CBA;
= ,
∵AB=AC,
∴AI=BI=4;
∵∠ACB=∠FGE,
∴AC∥FG,
= = ,
∴QI= AI=
故答案為:
題主要考查了平行線(xiàn)分線(xiàn)段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關(guān)鍵.由題意得出BC=1,BI=4,則 = ,再由∠ABI=∠ABC,得△ABI∽△CBA,根據(jù)相似三角形的性質(zhì)得 = ,求出AI,根據(jù)全等三角形性質(zhì)得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式 = = ,即可得到結(jié)果.本

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(列方程(組)及不等式解應(yīng)用題)
春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿(mǎn)足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.

(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均相等.網(wǎng)格中三個(gè)多邊形(分別標(biāo)記為①,②,③)的頂點(diǎn)均在格點(diǎn)上.被一個(gè)多邊形覆蓋的網(wǎng)格線(xiàn)中,豎直部分線(xiàn)段長(zhǎng)度之和記為m,水平部分線(xiàn)段長(zhǎng)度之和記為n,則這三個(gè)多邊形中滿(mǎn)足m=n的是( )

A.只有②
B.只有③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一根可伸縮的魚(yú)竿,魚(yú)竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚(yú)竿可收縮,完全收縮后,魚(yú)竿長(zhǎng)度即為第1節(jié)套管的長(zhǎng)度(如圖1所示):使用時(shí),可將魚(yú)竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚(yú)竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長(zhǎng)50cm,第2節(jié)套管長(zhǎng)46cm,以此類(lèi)推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長(zhǎng)度的重疊,設(shè)其長(zhǎng)度為xcm.

(1)請(qǐng)直接寫(xiě)出第5節(jié)套管的長(zhǎng)度;
(2)當(dāng)這根魚(yú)竿完全拉伸時(shí),其長(zhǎng)度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“一號(hào)龍卷風(fēng)”給小島O造成了較大的破壞,救災(zāi)部門(mén)迅速組織力量,從倉(cāng)儲(chǔ)D處調(diào)集救援物資,計(jì)劃先用汽車(chē)運(yùn)到與D在同一直線(xiàn)上的C、B、A三個(gè)碼頭中的一處,再用貨船運(yùn)到小島O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽車(chē)行駛的速度為50km/時(shí),貨船航行的速度為25km/時(shí),問(wèn)這批物資在哪個(gè)碼頭裝船,最早運(yùn)抵小島O?(在物資搬運(yùn)能力上每個(gè)碼頭工作效率相同,參考數(shù)據(jù): ≈1.4, ≈1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y=k1x+b與x軸、y軸相交于P、Q兩點(diǎn),與y= 的圖象相交于A(yíng)(﹣2,m)、B(1,n)兩點(diǎn),連接OA、OB,給出下列結(jié)論:①k1k2<0;②m+ n=0;③SAOP=SBOQ;④不等式k1x+b 的解集是x<﹣2或0<x<1,其中正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
隨意S=
得出答案后,愛(ài)動(dòng)腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:半徑為2的圓心P在直線(xiàn)y=2x﹣1上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí)圓心P的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案