【題目】不等式5﹣x>2的解集是( )
A.x<3
B.x>3
C.x<﹣7
D.x>﹣3
科目:初中數學 來源: 題型:
【題目】如圖乙,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.
(1)如圖甲,將△ADE繞點A 旋轉,當C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結論中,其中正確的是 .
① ② ③ ④
(2)若AB=4,AD=2,把△ADE繞點A旋轉,
①當∠EAC=90°時,求PB的長;
②求旋轉過程中線段PB長的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】網癮低齡化問題已經引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.
請根據圖中的信息,回答下列問題:
(1)這次抽樣調查中共調查了 人;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數是 ;
(4)據報道,目前我國12﹣35歲網癮人數約為2000萬,請估計其中12﹣23歲的人數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OA,OD是⊙O半徑.過A作⊙O的切線,交∠AOD的平分線于點C,連接CD,延長AO交⊙O于點E,交CD的延長線于點B.
(1)求證:直線CD是⊙O的切線;
(2)如果D點是BC的中點,⊙O的半徑為 3cm,求的長度.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,△ABC的三條邊BC=,CA=,AB=,D為△ABC內一點,且∠ADB=∠BDC=∠CDA=120°,DA=,DB=,DC=.
(1)若∠CDB=18°,則∠BCD= °;
(2)將△ACD繞點A順時針方向旋轉90°到,畫出,若∠CAD=20°,求度數;
(3)試畫出符合下列條件的正三角形:M為正三角形內的一點,M到正三角形三個頂點的距離分別為、、,且正三角形的邊長為++,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠AOB=120°,OC、OD過點O的射線,射線OM、ON分別平分∠AOC和∠DOB.
(1)如圖①,若OC、OD是∠AOB 的三等分線,求∠MON的度數;
(2)如圖②,若∠COD=50°,∠AOC≠∠DOB,則∠MON= °;
(3)如圖③,在∠AOB內,若∠COD=α(0°<α<60°),則∠MON= °.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com