請在右圖等邊三角形中標(biāo)明旋轉(zhuǎn)中心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,BC=6cm,∠ABC=30°.D是CB上一點,DC=1cm.P、Q是直線CB上的兩個動點,點P從C點出發(fā),以1cm/s的速度沿直線CB向右運動,同時,點Q從D點出發(fā),以2cm/s的速度沿直線CB向右運動,以PQ為一邊在CB的上方作等邊三角形PQR,如圖是其運動過程中的某一位置.設(shè)運動的時間是t(s).
(1)△PQR的邊長是
 
cm(用含有t的代數(shù)式表示);當(dāng)t=
 
時,點R落在AB上.
(2)若等邊△PQR與△ABC重疊部分的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
(3)在P、Q移動的同時,以點A為圓心、tcm為半徑的⊙A也在不斷變化,請直接寫出⊙A與△PQR的三邊所在的直線相切時t的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在等邊△ABC中,點D為AC上一點,連接BD,直線l與AB,BD,BC分別相交于點E,P,F(xiàn),且∠BPF=60度.
(1)如圖1,寫出圖中所有與△BPF相似的三角形,并選擇其中一對給予證明;
(2)若直線l向右平移到圖2,圖3的位置時(其它條件不變),(1)中的結(jié)論是否仍然成立?若成立,請寫出來(不證明),若不成立,請說明理由;
(3)探究:如圖1,當(dāng)BD滿足什么條件時(其它條件不變),PF=
12
PE?請寫出探精英家教網(wǎng)究結(jié)果,并說明理由.
(說明:結(jié)論中不得含有未標(biāo)識的字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知,△ABC是等邊三角形,將一塊含有30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線上向右平移,如圖1,當(dāng)點E與點B重合時,點A恰好落在三角形的斜邊DF上.
(1)利用圖1證明:EF=2BC;
(2)在三角板的平移過程中,在圖2中線段EB=AH是否始終成立(假定AB,AC與三角板斜邊的交點為G、H)?如果成立,請證明;如果不成立,請說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:△ABC為邊長是4
3
的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當(dāng)點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).

(1)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為4
3
的正方形,△ABC的移動速度為每秒
3
個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG-GD以每秒2
3
個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線BA-AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案