【題目】綜合題。
(1)解不等式組
(2)解方程

【答案】
(1)解:

由①得:x<1,

由②得:x≥﹣3,

則此不等式組的解集為﹣3≤x<1;


(2)解:去分母得:2(x+1)=x﹣3,

去括號得:2x+2=x﹣3,

解得:x=﹣5,

檢驗:當x=﹣5時,(x+1)(x﹣3)≠0,

則x=﹣5為原方程的解.


【解析】(1)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
【考點精析】本題主要考查了去分母法和一元一次不等式組的解法的相關(guān)知識點,需要掌握先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,AD⊥BC,垂足為點D,DE∥AC交AB于E,DF∥AB交AC于F,當△ABC再添加一個條件:時,四邊形AEDF為菱形(填寫一個條件即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°).點D為AB的中點,DE交AC于點P,DF經(jīng)過點C.
(1)求∠ADE的度數(shù);
(2)如圖②,在圖①的基礎(chǔ)上將△DEF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點E,交CB于點F。

(1)求證:CE=CF。

(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點E′落在BC邊上,其它條件不變,如圖(2)所示試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為 ,點C的坐標為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值為( )

A.
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)為更好的提高業(yè)主垃圾分類的意識,管理處決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買3個溫馨提示牌和4個垃圾箱共需580元,且每個溫馨提示牌比垃圾箱便宜40元.
(1)問購買1個溫馨提示牌和1個垃圾箱各需多少元?
(2)如果需要購買溫馨提示牌和垃圾箱共100個,費用不超過8000元,問最多購買垃圾箱多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一張△ABC紙片,點D,E分別在線段AC,AB上,將△ADE沿著DE折疊,A與A′重合,若∠A=α,則∠1+∠2=(
A.α
B.2α
C.180°﹣α
D.180°﹣2α

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的中線,點EAD的中點,過點AAFBCBE的延長線于F,連接CF.

(1)求證:AEF≌△DEB;

(2)若∠BAC=90°,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;

(3)在(2)的情況下,點MAC線段上移動,請直接回答,當點M移動到什么位置時,MB+MD有最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)

(1)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出各點的坐標.
(2)在x軸上求作一點P,使△PAB的周小最小,請畫出△PAB,并直接寫出P的坐標.

查看答案和解析>>

同步練習冊答案