(2013•北侖區(qū)二模)下列命題:
①40°角為內(nèi)角的兩個等腰三角形必相似;
②反比例函數(shù)y=-
2
x
,當x>-2時,y隨x的增大而增大;
③兩圓的半徑分別是3和4,圓心距為d,若兩圓有公共點,則1<d<7.
④若圓的半徑為5,AB、CD是兩條平行弦,且AB=8,CD=6,則弦AC的長為
2
或5
2

⑤函數(shù)y=-(x-3)2+4(-1≤x≤4)的最大值是4,最小值是3.
其中真命題有(  )
分析:①當兩三角形一個頂角為40°,另一個底角為40°,即可得出反例;
②利用反比例函數(shù)的增減性,是每個象限內(nèi)具有相同增減性分析即可;
③利用兩圓有公共點包括相交或相切得出答案即可;
④先求出兩弦心距,在分三種情況利用勾股定理求解;
⑤利用二次函數(shù)的最值求法得出答案即可.
解答:解:①當兩三角形一個頂角為40°,另一個底角為40°,此時40°角為內(nèi)角的兩個等腰三角形不相似;故此選項錯誤;
②反比例函數(shù)y=-
2
x
,當x>0時,y隨x的增大而增大;故此選項錯誤;
③兩圓的半徑分別是3和4,圓心距為d,若兩圓有公共點,1≤d≤7,故此選項錯誤;
利用垂徑定理和勾股定理可知:OE=3,OF=4,
a.如圖,∵4-3=1,(8-6)÷2=1,
∴AC=
2
;
b.如圖,∵4+3=7,(8-6)÷2=1,
∴AC=5
2

c.如右圖,連接AO,OC,由r=5,AB=6,CD=8,
可得OE=4,OF=3,EF=7,
∵AB∥CD,∴△EGC∽△AGF
EG
GF
=
EC
AF
=
3
4
,
4-OG
3+OG
=
3
4
,
∴OG=1,
∴EG=4-1=3,OF=3+1=4,
∴CG=3
2
,
AG═4
2
,
AC=AG+CG=3
2
+4
2
=7
2

因此,弦AC的長為
2
或5
2
或7
2
.故此選項錯誤.
⑤函數(shù)y=-(x-3)2+4(-1≤x≤4)的最大值是4,最小值是當x=-1時y=-12,故此選項錯誤.
故全部錯誤,
故選:A.
點評:此題主要考查了相似三角形的判定以及反比例函數(shù)的增減性、二次函數(shù)的最值問題、兩圓位置關(guān)系和垂徑定理等知識,像這類題畫圖是關(guān)鍵,圖形可以直觀方便的讀懂題意,而且在本題在要分情況而論,所以學生平時的思維要嚴密.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)在數(shù)-2,0,-
1
2
,2中,其中最小的數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)已知樣本數(shù)據(jù)1,0,6,1,2,下列說法不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)割圓術(shù)是我國古代數(shù)學家劉徽創(chuàng)造的一種求周長和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長和面積越來越接近圓周長和圓面積,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.試用這個方法解決問題:如圖,⊙的內(nèi)接多邊形周長為3,⊙O的外切多邊形周長為3.4,則下列各數(shù)中與此圓的周長最接近的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個實根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點橫坐標分別是(  )

查看答案和解析>>

同步練習冊答案