A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$ |
分析 先把x=1代入y=x+1,得出y=2,則兩個(gè)一次函數(shù)的交點(diǎn)P的坐標(biāo)為(1,2);那么交點(diǎn)坐標(biāo)同時(shí)滿足兩個(gè)函數(shù)的解析式,而所求的方程組正好是由兩個(gè)函數(shù)的解析式所構(gòu)成,因此兩函數(shù)的交點(diǎn)坐標(biāo)即為方程組的解.
解答 解:把x=1代入y=x+1,得出y=2,
函數(shù)y=x+1和y=ax+3的圖象交于點(diǎn)P(1,2),
即x=1,y=2同時(shí)滿足兩個(gè)一次函數(shù)的解析式.
所以關(guān)于x,y的方程組$\left\{\begin{array}{l}{x-y=-1}\\{ax-y=-3}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$.
故選:A.
點(diǎn)評(píng) 此題考查了一次函數(shù)與二元一次方程組的聯(lián)系,方程組的解就是使方程組中兩個(gè)方程同時(shí)成立的一對(duì)未知數(shù)的值,而這一對(duì)未知數(shù)的值也同時(shí)滿足兩個(gè)相應(yīng)的一次函數(shù)式,因此方程組的解就是兩個(gè)相應(yīng)的一次函數(shù)圖象的交點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{5}{3}$的倒數(shù)是$\frac{5}{3}$ | B. | -$\frac{2{x}^{2}y}{3}$的系數(shù)是$\frac{2}{3}$ | ||
C. | -32的值是9 | D. | 3n-4m2n是三次二項(xiàng)式 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,7) | B. | (3,7) | C. | (-3,-7) | D. | (3,-7) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com