【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1個(gè)單位長度, 的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′,C′,分別是B,C的對應(yīng)點(diǎn).
(1)請畫出平移后的,并求的面積;
(2)試說明△A'B'C'是如何由△ABC平移得到的;
(3)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
【答案】(1)3.5 (2)△A'B'C'是由△ABC向左平移5個(gè)單位長度,再向下平移2個(gè)單位長度得到的.或向下平移2個(gè)單位長度,再向左平移5個(gè)單位長度得到的.(3)平行且相等
【解析】分析:(1)利用正方形面積減去三個(gè)三角形面積.(2)點(diǎn)平移以后,再連接.(3)根據(jù)平移的性質(zhì)可以得到結(jié)論.
詳解:
如圖,S△A′B′C′=3.
△A′B′C′的面積為3.5 .
(2)△A'B'C'是由△ABC向左平移5個(gè)單位長度,再向下平移2個(gè)單位長度得到的.
或向下平移2個(gè)單位長度,再向左平移5個(gè)單位長度得到的.
(3)平行且相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知12箱蘋果,以每箱10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),稱重記錄如下:
+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。
⑴求12箱蘋果的總重量;
⑵若每箱蘋果的重量標(biāo)準(zhǔn)為100.5(千克),則這12箱有幾箱不合乎標(biāo)準(zhǔn)的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c(b,c為常數(shù)).
(1)當(dāng)b=2,c=﹣3時(shí),求二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)當(dāng)c=10時(shí),若在函數(shù)值y=1的情況下,只有一個(gè)自變量x的值與其對應(yīng),求此時(shí)二次函數(shù)的解析式;
(3)當(dāng)c=b2時(shí),若在自變量x的值滿足b≤x≤b+3的情況下,與其對應(yīng)的函數(shù)值y的最小值為21,求此時(shí)二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了 淡水魚,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng) 天的總成本為 萬元;放養(yǎng) 天的總成本為 萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是 萬元,收購成本為 萬元,求 和 的值;
(2)設(shè)這批淡水魚放養(yǎng) 天后的質(zhì)量為 ( ),銷售單價(jià)為 元/ .根據(jù)以往經(jīng)驗(yàn)可知: 與 的函數(shù)關(guān)系為 ; 與 的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng) 和 時(shí), 與 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng) 天后一次性出售所得利潤為 元,求當(dāng) 為何值時(shí), 最大?并求出最大值.(利潤=銷售總額-總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)方法回顧:在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:
第一步添加輔助線:如圖1,在中,延長(分別是的中點(diǎn))到點(diǎn),使得,連接;
第二步證明,再證四邊形是平行四邊形,從而得出三角形中位線的性質(zhì)結(jié)論:____________________________________(請用DE與BC表示)
(2)問題解決:如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長.
(3)拓展研究:如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=,DF=2,∠GEF=90°,求GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,拋物線 與 軸交于A,B兩點(diǎn),點(diǎn)P在拋物線上(點(diǎn)P與A,B兩點(diǎn)不重合),如果△ABP的三邊滿足 ,則稱點(diǎn)P為拋物線 的勾股點(diǎn)。
(1)直接寫出拋物線 的勾股點(diǎn)的坐標(biāo);
(2)如圖2,已知拋物線C: 與 軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線C的勾股點(diǎn),求拋物線C的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)Q在拋物線C上,求滿足條件 的點(diǎn)Q(異于點(diǎn)P)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對應(yīng)的數(shù)為x.
(1)MN的長為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長度和每分鐘3個(gè)單位長度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為-10,B點(diǎn)對應(yīng)的數(shù)為90.
(1)請寫出與A,B兩點(diǎn)距離相等的M點(diǎn)對應(yīng)的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,求C點(diǎn)對應(yīng)的數(shù)是多少.
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),求經(jīng)過多長的時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的普及,微信一種聊天軟件的興起,許多人抓住這種機(jī)會(huì),做起了“微商”,很多農(nóng)產(chǎn)品也改變了原來的銷售模式,實(shí)行了網(wǎng)上銷售,這不剛大學(xué)畢業(yè)的小明把自家的冬棗產(chǎn)品也放到了網(wǎng)上,他原計(jì)劃每天賣100斤冬棗,但由于種種原因,實(shí)際每天的銷售量與計(jì)劃量相比有出入,下表是某周的銷售情況超額記為正,不足記為負(fù)單位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計(jì)劃量的差值 |
|
|
|
|
|
|
|
(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣出 ______ 斤;
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售 ______ 斤;
(3)本周實(shí)際銷售總量達(dá)到了計(jì)劃數(shù)量沒有?
(4)若冬季每斤按8元出售,每斤冬棗的運(yùn)費(fèi)平均3元,那么小明本周一共收入多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com