【題目】如圖,⊙O的直徑AB為2cm,弦BC為1cm,∠ACB的平分線與⊙O交于點(diǎn)D,與AB交于點(diǎn)E,P為AB延長(zhǎng)線上一點(diǎn),連接PC,且PC=PE.
(1)求AC、AD的長(zhǎng);
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
【答案】(1)AC= cm,AD=;(2) 直線PC與⊙O相切,理由見解析
【解析】(1)連接BD,如圖,根據(jù)圓周角定理由AB為直徑得∠ACB=∠ADB=90°,則可利用勾股定理計(jì)算出 由CD平分∠ACB得 根據(jù)圓周角定理得 則為等腰直角三角形,由勾股定理即可得出的長(zhǎng);
(2)連接OC,由PC=PE,得∠PCE=∠PEC,利用三角形外角性質(zhì)得∠PEC=∠CAE+∠ACE,根據(jù)CD平分∠ACB,得到∠ACE=∠ECB,∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,于是根據(jù)切線的判定定理可得PC為的切線.
(1)①如圖,連接BD,
∵AB是直徑,
∴∠ACB=∠ADB=90°,
在中,
AC=== cm,
②∵CD平分∠ACB,
∴AD=BD,
∴Rt△ABD是直角等腰三角形,
(2)直線PC與⊙O相切,
理由:連接OC,
∵OC=OA,
∴∠CAO=∠OCA,
∵PC=PE,
∴∠PCE=∠PEC,
∵∠PEC=∠CAE+∠ACE,
∵CD平分∠ACB,
∴∠ACE=∠ECB,
∴∠PCB=∠ACO,
∵∠ACB=90°,
∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠CB=90°,
OC⊥PC,
∴直線PC與⊙O相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A、O、B三點(diǎn)在同一直線上,OE、OD分別平分∠AOC、∠BOC.
(1)求∠EOD的度數(shù);
(2)若∠AOE=50°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;①AD平分∠BAC;③AE=AD;④AB+AC=2AE.其中正確的有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市開展了“尋找雷鋒足跡”的活動(dòng),某中學(xué)為了解七年級(jí)1000名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事的情況,隨機(jī)調(diào)查了七年級(jí)50名學(xué)生在一個(gè)月內(nèi)做好事的次數(shù),并將所得數(shù)據(jù)繪制成統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問題:
(1)所調(diào)查的七年級(jí)50名學(xué)生在這個(gè)月內(nèi)做好事次數(shù)的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;
(2)根據(jù)樣本數(shù)據(jù),估計(jì)該校七年級(jí)1000名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事大于4次的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一批襯衫,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利, 盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.假設(shè)在一定范圍內(nèi),襯衫的單價(jià)每降低1元,商場(chǎng)平均每天可多售出2件.設(shè)襯衫的單價(jià)降了x元:
(1)該商場(chǎng)降價(jià)后每件盈利___________元,每天可售出________件;
(2)如果商場(chǎng)通過銷售這批襯衫每天盈利1200元,那么襯衫的單價(jià)降了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點(diǎn)H.
(1)當(dāng)矩形EFPQ為正方形時(shí),求正方形的邊長(zhǎng);
(2)設(shè)EF=x,當(dāng)x為何值時(shí),矩形EFPQ的面積最大?并求出最大面積;
(3)當(dāng)矩形EFPQ的面積最大時(shí),該矩形EFPQ以每秒1個(gè)單位的速度沿射線BC勻速向右運(yùn)動(dòng)(當(dāng)矩形的頂點(diǎn)Q到達(dá)C點(diǎn)時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩超市(大型商場(chǎng))同時(shí)開業(yè),為了吸引顧客,都舉行了有獎(jiǎng)酬賓活動(dòng):凡購物滿100元,均可得到一次摸獎(jiǎng)的機(jī)會(huì). 在一個(gè)紙盒里裝有2個(gè)紅求和2個(gè)白球,除顏色外其他都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少(如下表)
甲 超 市
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券 | 5 | 10 | 5 |
乙 超 市
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券 | 10 | 5 | 10 |
(1)用樹狀圖或列表法表示得到一次摸獎(jiǎng)機(jī)會(huì)時(shí)中禮金券的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會(huì)選擇去哪個(gè)超市購物?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,一個(gè)圖形先向右平移a個(gè)單位,再繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)θ角度,這樣的圖形運(yùn)動(dòng)叫作圖形的γ(a,θ)變換.
如圖,等邊△ABC的邊長(zhǎng)為1,點(diǎn)A在第一象限,點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸的正半軸上.△A1B1C1就是△ABC經(jīng)γ(1,180°)變換后所得的圖形.
若△ABC經(jīng)γ(1,180°)變換后得△A1B1C1,△A1B1C1經(jīng)γ(2,180°)變換后得△A2B2C2,△A2B2C2經(jīng)γ(3,180°)變換后得△A3B3C3,依此類推……
△An﹣1Bn﹣1Cn﹣1經(jīng)γ(n,180°)變換后得△AnBnCn,則點(diǎn)A1的坐標(biāo)是__,點(diǎn)A2018的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識(shí)別.某校建立了一個(gè)身份識(shí)別系統(tǒng),圖2是某個(gè)學(xué)生的識(shí)別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級(jí)序號(hào),其序號(hào)為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號(hào)為,表示該生為5班學(xué)生.表示6班學(xué)生的識(shí)別圖案是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com