【題目】如圖,矩形ABCD為臺球桌面,AD=240cm,AB=120cm,球目前在G點位置,AG=80cm,如果小丁瞄準(zhǔn)BC邊上的點F將球打過去,經(jīng)過點F反彈后碰到CD邊上的點H,再經(jīng)過點H反彈后,球剛好彈到AD邊的中點E處落袋.
(1)求證:△BGF∽△DHE;
(2)求BF的長.
【答案】(1)見詳解;(2)90 cm
【解析】
(1)根據(jù)兩角對應(yīng)相等的兩個三角形相似即可判斷.
(2)延長AD交FH的延長線于N,作NM⊥BC交BC的延長線于M.由△GBF∽△NFM,推出 ,由此構(gòu)建方程即可解決問題.
(1)證明:∵四邊形ABCD是矩形,
∴∠B=∠C=∠D=90°,
∵∠GFB=∠HFC,∠FHC=∠EHD,∠HFC+∠FHC=∠DEH+∠EHD=90°,
∴∠HED=∠HFC,
∴∠GFB=∠HED,
∴△BGF∽△DHE;
(2)解:延長AD交FH的延長線于N,作NM⊥BC交BC的延長線于M.
∵∠B=∠M=90°,∠GFB=∠HFC,
∴△GBF∽△NFM,
∴
∴BF=90 cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為8,則GE+FH的最大值為( )
A.8B.12C.16D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標(biāo)。
(2)求當(dāng)t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標(biāo).
(3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直線x=1.有以下結(jié)論:①abc>0;②7a+c<0;③a+b≤m(am+b)(m為任意實數(shù))④若A(x1,m),B(x2,m)是拋物線上的兩點,當(dāng)x=x1+x2時,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.其中正確結(jié)論的個數(shù)有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象經(jīng)過(0,0)、(1,1)、(1,9)三點,下列性質(zhì)錯誤的是( )
A.開口向上B.對稱軸在y軸左側(cè)
C.經(jīng)過第四象限D.當(dāng)x>0,y隨x增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=2,E為AB的中點,F為EC上一動點,P為DF中點,連接PB,則PB的最小值是( )
A.2B.4C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,D在BC上,且CD=3cm,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以cm/s的速度沿BC向終點C移動.過點P作PE∥BC交AD于點E,連接EQ.設(shè)動點運動時間為x秒.
(1)周含x的代表數(shù)式表示AE、DE的長度;
(2)當(dāng)點Q在BD(不包括點B、D)上移動時,設(shè)△EDQ的面積為y(cm),求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當(dāng)x為何值時,△EDQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點是線段上任意一點,過點作交于點,過點作交于點,過點作交于點.設(shè)線段的長為.
(1)用含的代數(shù)式表示線段的長.
(2)當(dāng)四邊形為菱形時,求的值.
(3)設(shè)與矩形重疊部分圖形的面積為,求與之間的函數(shù)關(guān)系式.
(4)連結(jié)、,當(dāng)與垂直或平行時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過,,三點.
求拋物線的解析式;
若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com