【題目】綜合與實(shí)踐

問(wèn)題情境

在學(xué)習(xí)了《勾股定理》和《實(shí)數(shù)》后,某班同學(xué)以已知三角形三邊的長(zhǎng)度,求三角形面積為主題開(kāi)展了數(shù)學(xué)活動(dòng).

操作發(fā)現(xiàn)

畢達(dá)哥拉斯小組的同學(xué)想到借助正方形網(wǎng)格解決問(wèn)題.如圖16×6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).在圖1中畫出△ABC,其頂點(diǎn)AB,C都是格點(diǎn),同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DE,EF分別經(jīng)過(guò)點(diǎn)C、A,他們借助此圖求出了△ABC的面積.

1)在圖1中,所畫的△ABC的三邊長(zhǎng)分別是AB= ,BC= ,AC= ; △ABC的面積為 .

實(shí)踐探究

2)在圖2所示的正方形網(wǎng)格中畫出△DEF(頂點(diǎn)都在格點(diǎn)上),使DE=,DF=, EF=,并寫出△DEF的面積.

繼續(xù)探究

秦九韶小組的同學(xué)想到借助曾經(jīng)閱讀的數(shù)學(xué)資料: 已知三角形的三邊長(zhǎng)分別為a、b、c,求其面積,對(duì)此問(wèn)題中外數(shù)學(xué)家曾經(jīng)進(jìn)行過(guò)深入研究.古希臘的幾何學(xué)家海倫(Heron,約公元50年),在他的著作《度量》一書中,給出了求其面積的海倫公式:

我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶(約1202 ~1261),給出了著名的秦九韶公式:

3)一個(gè)三角形的三邊長(zhǎng)依次為,,請(qǐng)你從上述材料中選用適當(dāng)?shù)墓?/span> 求這個(gè)三角形的面積.(寫出計(jì)算過(guò)程)

【答案】1,,;(2)圖見(jiàn)解析;DEF的面積為4;(3.

【解析】

1)利用勾股定理計(jì)算ABC的三邊長(zhǎng);利用ABC所在正方形的面積減去周圍直角三角形的面積可求其面積;

2)仿照畢達(dá)哥拉斯小組的方法利用勾股定理在正方形網(wǎng)格中畫出DEF,并利用割補(bǔ)法求其面積即可;

3)利用秦九韶公式,代入求值即可.

解:(1,,,

ABC的面積=,

故答案為:,,

2DEF如圖所示,

DEF的面積=

3)將,,代入秦九韶公式,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8字”的性質(zhì)及應(yīng)用:

1)如圖1AD、BC相交于點(diǎn)O,得到一個(gè)“8字”ABCD,求證:∠A+B=∠C+D

2)如圖2,∠ABC和∠ADC的平分線相交于點(diǎn)E,利用(1)中的結(jié)論證明:∠E(∠A+C).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)A3,2)及B1,6.

1)求此一次函數(shù)的解析式;

2)求此一次函數(shù)與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正方形的中心在原點(diǎn),且正方形的一組對(duì)邊與軸平行.點(diǎn)是反比例幽數(shù)的圖象上與正方形的一個(gè)交點(diǎn),若圖中陰影部分的面積等于,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線軸、軸分別交于點(diǎn),與的圖象交于點(diǎn),是點(diǎn)關(guān)于點(diǎn)的中心對(duì)稱點(diǎn),,若的面積與的面積之和為時(shí),則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)﹚,,﹚,交軸于點(diǎn),交軸于點(diǎn)

求反比例函數(shù)和一次函數(shù)的表達(dá)式;

連接,求的面積;

根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,厘米,厘米,點(diǎn)出發(fā),以每秒厘米的速度向運(yùn)動(dòng),點(diǎn)同時(shí)出發(fā),以每秒厘米的速度向運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也相應(yīng)停止運(yùn)動(dòng),那么,當(dāng)以、為頂點(diǎn)的三角形與相似時(shí),運(yùn)動(dòng)時(shí)間為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在一次高爾夫球爭(zhēng)霸賽中從山坡上的點(diǎn)打出一球向球洞飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當(dāng)球達(dá)到最大鉛垂高度時(shí),球移動(dòng)的水平距離為.已知山坡與水平方向的夾角為,兩點(diǎn)相距

求出點(diǎn)的坐標(biāo);

求拋物線解析式.并判斷小明這一桿能否把高爾夫球從點(diǎn)直接打入球洞?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)ECD邊上,將ADE沿AE對(duì)折得到AFE,延長(zhǎng)EFBC邊于點(diǎn)G,連結(jié)AG.給出結(jié)論:①△ABGAFG;②∠EAG45°;③∠AGB+AED135°.其中正確的結(jié)論有(

A.只有①B.①②C.②③D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案