【題目】若實數(shù)ab,且ab滿足a25a+30,b25b+30,則代數(shù)式a26ab的值為_____

【答案】-8

【解析】

ab是關(guān)于x的一元二次方程x25x+30的兩個實數(shù)根,根據(jù)根與系數(shù)關(guān)系求解.

解:∵實數(shù)ab滿足a25a+30,b25b+30,

a、b是關(guān)于x的一元二次方程x25x+30的兩個實數(shù)根,

a+b5、ab3,

∴原式=﹣35=﹣8,

故答案為:﹣8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】a________時,(2+a)x﹣7>5是關(guān)于x的一元一次不等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2﹣2x+k=0有兩個實數(shù)根,則實數(shù)k的取值范圍是(  )

A. k≤1 B. k1 C. k=1 D. k≥1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過類比聯(lián)想,引申拓展研究典型題目,可達到解一題知一類的目的,下面是一個案例,請補充完整.

原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連結(jié)EF,試猜想EF、BE、DF之間的數(shù)量關(guān)系.
(1)思路梳理
把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即點F、D、G共線,易證△AFG≌ , 故EF、BE、DF之間的數(shù)量關(guān)系

(2)類比引申
如圖2,點E、F分別在正方形ABCD的邊CB、DC的延長線上,∠EAF=45°,連結(jié)EF,試猜想EF、BE、DF之間的數(shù)量關(guān)系為 , 并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠BAD+∠EAC=45°,若BD=3,EC=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次食品安檢中,抽查某企業(yè)10袋奶粉,每袋取出100克,檢測每100克奶粉蛋白質(zhì)含量與規(guī)定每100克含量(蛋白質(zhì))比較,不足為負,超過為正,記錄如下:(注:規(guī)定每100g奶粉蛋白質(zhì)含量為15g)-3,-4,-5,+1,+3,+2,0,-1.5,+1,+2.5
(1)求平均每100克奶粉含蛋白質(zhì)為多少?
(2)每100克奶粉含蛋白質(zhì)不少于14克為合格,求合格率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)﹣22 , (﹣2)3 , ﹣|﹣2|, 按從小到大的順序排列為(
A.(﹣2)3<﹣22<﹣|﹣2|<
B. <﹣|﹣2|<﹣22<(﹣2)3
C.﹣|﹣2|< <﹣22<(﹣2)3
D.﹣22<(﹣2)3 <﹣|﹣2|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算中,正確的是( )

A.3m2m5m2B.(-a b2)3÷(ab2)2=-ab2

C.(2ab)(2ab)=2a2b2D.(2xy)24x2y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=40°,AB的垂直平分線MN交AC于點D,則∠DBC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗的家和學校在一條筆直的馬路旁,某天小麗沿著這條馬路上學,先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學校(在整個過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學校之間的距離y(米)與她離家時間x(分鐘)之間的函數(shù)關(guān)系.

(1)求小麗步行的速度及學校與公交站臺乙之間的距離;

(2)當8≤x≤15時,求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案