【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度,△ABC的頂點均在格點上,三個頂點的坐標(biāo)分別是A(-3,4),B(-2,1),C(-4,2).
(1)將△ABC先向右平移7個單位長度,再向上平移2個單位長度,畫出第二次平移后的△;
(2)以點O(0,0)為對稱中心,畫出與△ABC成中心對稱的△;
(3)將點B繞坐標(biāo)原點逆時針方向旋轉(zhuǎn)90°至點,則點的坐標(biāo)為(______,______)
【答案】(1)圖形見解析;(2)圖形見解析;(3)點B3見解析,B3的坐標(biāo)為:(-1,-2).
【解析】
(1) (1)根據(jù)△ABC先向右平移7個單位長度,再向上平移2個單位長度,得出對應(yīng)點坐標(biāo)進(jìn)而得出答案;
(2)根據(jù)△ABC關(guān)于原點O對稱的△A2B2C2,得出對應(yīng)點坐標(biāo)進(jìn)而得出答案;
(3)根據(jù)點B繞坐標(biāo)原點逆時針旋轉(zhuǎn)90°后所得的圖形B3,得出對應(yīng)點坐標(biāo)進(jìn)而得出答案.
解:(1)如圖所示:△A1B1C1為所求;
(2)如圖所示:△A2B2C2為所求;
(3)如圖所示:點 B3即為所求,B3的坐標(biāo)為:(-1,-2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一根彈簧的長度為10厘米,當(dāng)彈簧受到千克的拉力時(不超過10),彈簧的長度是(厘米),測得有關(guān)數(shù)據(jù)如下表所示:
拉力(千克) | 1 | 2 | 3 | 4 | … |
彈簧的長度(厘米) | … |
(1)寫出彈簧長度(厘米)關(guān)于拉力(千克)的函數(shù)解析式;
(2)如果拉力是10千克,那么彈簧長度是多少厘米?
(3)當(dāng)拉力是多少時,彈簧長度是14厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,兩地相距,甲騎自行車,乙騎摩托車沿一條筆直的公路由地勻速行駛到地.設(shè)行駛時間為,甲、乙離開地的路程分別記為,,它們與的關(guān)系如圖所示.
(1)分別求出線段,所在直線的函數(shù)表達(dá)式.
(2)試求點的坐標(biāo),并說明其實際意義.
(3)乙在行駛過程中,求兩人距離超過時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC=8,BO=AB,點M為BC邊上一動點,將線段OM繞點O按逆時針方向旋轉(zhuǎn)90°至ON,連接AN、CN,則△CAN周長的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,△ADC和△CEB全等嗎?請說明理由.
(2)聰明的小亮發(fā)現(xiàn),當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,可得DE=AD+BE,請你說明其中的理由。
(3)小亮將直線MN繞點C旋轉(zhuǎn)到圖2的位置,線段DE、AD、BE之間存在著什么的數(shù)量關(guān)系,請寫出這一關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學(xué)生的體藝素養(yǎng),隨機(jī)抽取了部分學(xué)生對這三項活動的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計圖補(bǔ)充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)已知該校有1200名學(xué)生,請你根據(jù)樣本估計全校學(xué)生中喜歡剪紙的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線BC方向平移3 cm得到△DEF.若△ABC的周長為14 cm,則四邊形ABFD的周長為( )
A. 20 cmB. 17 cm
C. 14 cmD. 23 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y1=與直線y2=的圖象交于A、B兩點.已知點A的坐標(biāo)為(4,1),點P(a,b)是雙曲線y1=上的任意一點,且0<a<4.
(1)分別求出y1、y2的函數(shù)表達(dá)式;
(2)連接PA、PB,得到△PAB,若4a=b,求三角形ABP的面積;
(3)當(dāng)點P在雙曲線y1=上運(yùn)動時,設(shè)PB交x軸于點E,延長PA交x軸于點F,判斷PE與PF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點左側(cè),B點的坐標(biāo)為(4,0),與y軸交于C(0,﹣4)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運(yùn)動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com