【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度,△ABC的頂點均在格點上,三個頂點的坐標(biāo)分別是A(-3,4),B(-2,1)C(-4,2).

(1)將△ABC先向右平移7個單位長度,再向上平移2個單位長度,畫出第二次平移后的△;

(2)以點O(0,0)為對稱中心,畫出與△ABC成中心對稱的△;

(3)將點B繞坐標(biāo)原點逆時針方向旋轉(zhuǎn)90°至點,則點的坐標(biāo)為(______,______)

【答案】(1)圖形見解析;(2)圖形見解析;(3)點B3見解析,B3的坐標(biāo)為:(-1,-2).

【解析】

(1) 1)根據(jù)△ABC先向右平移7個單位長度,再向上平移2個單位長度,得出對應(yīng)點坐標(biāo)進(jìn)而得出答案;
2)根據(jù)△ABC關(guān)于原點O對稱的△A2B2C2,得出對應(yīng)點坐標(biāo)進(jìn)而得出答案;

3)根據(jù)點B繞坐標(biāo)原點逆時針旋轉(zhuǎn)90°后所得的圖形B3,得出對應(yīng)點坐標(biāo)進(jìn)而得出答案.

解:(1)如圖所示:△A1B1C1為所求;
2)如圖所示:△A2B2C2為所求;

3)如圖所示:點 B3即為所求,B3的坐標(biāo)為:(-1-2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一根彈簧的長度為10厘米,當(dāng)彈簧受到千克的拉力時(不超過10),彈簧的長度是(厘米),測得有關(guān)數(shù)據(jù)如下表所示:

拉力(千克)

1

2

3

4

彈簧的長度(厘米)

1)寫出彈簧長度(厘米)關(guān)于拉力(千克)的函數(shù)解析式;

2)如果拉力是10千克,那么彈簧長度是多少厘米?

3)當(dāng)拉力是多少時,彈簧長度是14厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,兩地相距,甲騎自行車,乙騎摩托車沿一條筆直的公路由地勻速行駛到地.設(shè)行駛時間為,甲、乙離開地的路程分別記為,,它們與的關(guān)系如圖所示.

1)分別求出線段,所在直線的函數(shù)表達(dá)式.

2)試求點的坐標(biāo),并說明其實際意義.

3)乙在行駛過程中,求兩人距離超過的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB=AC=8,BO=AB,點MBC邊上一動點,將線段OM繞點O按逆時針方向旋轉(zhuǎn)90°ON,連接ANCN,則△CAN周長的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB90°,ACBC,直線MN經(jīng)過點C,且ADMNDBEMNE.

1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,△ADC和△CEB全等嗎?請說明理由.

2)聰明的小亮發(fā)現(xiàn),當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,可得DEADBE,請你說明其中的理由。

3)小亮將直線MN繞點C旋轉(zhuǎn)到圖2的位置,線段DEAD、BE之間存在著什么的數(shù)量關(guān)系,請寫出這一關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學(xué)生的體藝素養(yǎng),隨機(jī)抽取了部分學(xué)生對這三項活動的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計圖補(bǔ)充完整;

2)本次抽樣調(diào)查的樣本容量是 ;

3)已知該校有1200名學(xué)生,請你根據(jù)樣本估計全校學(xué)生中喜歡剪紙的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3 cm得到△DEF.若△ABC的周長為14 cm,則四邊形ABFD的周長為(

A. 20 cmB. 17 cm

C. 14 cmD. 23 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于A、B兩點.已知點A的坐標(biāo)為(4,1),點Pa,b)是雙曲線y1上的任意一點,且0a4

1)分別求出y1、y2的函數(shù)表達(dá)式;

2)連接PA、PB,得到△PAB,若4ab,求三角形ABP的面積;

3)當(dāng)點P在雙曲線y1上運(yùn)動時,設(shè)PBx軸于點E,延長PAx軸于點F,判斷PEPF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點左側(cè),B點的坐標(biāo)為(4,0),與y軸交于C(0,﹣4)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達(dá)式.

(2)連接PO、PC,并把POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.

(3)當(dāng)點P運(yùn)動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

同步練習(xí)冊答案