【題目】為了爭創(chuàng)全國文明城市六連冠,寫好2020年包頭文明答卷,我市某班學生開展主題為垃圾分類知多少的專題調查活動,采取隨機抽樣的方式對全年級同學進行卷調查,問卷調查的結果分為非常了解”“比較了解”“基本了解”“不太了解四個等級,劃分等級后的數(shù)據(jù)整理如下表:

同時該班又抽取了班里的8名學生(分別為,,,,,),進行垃圾分類投放檢測,檢測結果如下表)其中“√”表示投放正確,“×”表示投放錯誤.

根據(jù)上表回答問題:

1)求本次問卷調查取樣的樣本容量和表中的值;

2)檢測結果中,有幾名學生正確投放了至少三類垃圾?請列舉出這幾名學生;

3)為進一步了解學生垃圾分類的投放情況,從檢測結果是有害垃圾投放錯誤的學生巾隨機抽取2名進行訪談,請用列表或樹狀圖法求抽到學生的概率.

【答案】12000.6;(25位,分別是,,,同學;(3)表見解析,

【解析】

1)由于非常了解頻數(shù)40,頻率為0.2,即可計算樣本容量;表中的m是比較了解的頻率,可用頻數(shù)除以樣本容量進行計算;

2)分析題意,結合表格的數(shù)據(jù),即可得到答案;

3)利用表格的數(shù)據(jù)得到投放錯誤的同學,然后利用列表法求概率,即可得到答案.

解:(1;

2)有5位同學正確投放了至少三類垃圾,他們分別是,,同學.

3有害垃圾投放錯誤的學生有,,,同學,從抽出2人所有可能出現(xiàn)的結果如下:

共有20種等可能出現(xiàn)的結果數(shù),其中抽到的有8種,

因此,抽到學生的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是邊長為的等邊三角形.將△ABC繞點A逆時針旋轉角θθ180°),得到△ADE,BDEC所在直線相交于點O

1)如圖a,當θ=20°時,判斷△ABD與△ACE是否全等?并說明理由;

2)當△ABC旋轉到如圖b所在位置時(60°θ120°),求∠BOE的度數(shù);

3)在θ60°120°的旋轉過程中,點O運動的軌跡長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E

1)證明:四邊形ACDE是平行四邊形;

2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們的東北方向距離12海里處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏艇以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏隊出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于函數(shù)的四個命題:

①當x=0時,y有最小值12

n為任意實數(shù),x=3+n時的函數(shù)值大于x=3-n時的函數(shù)值;

③若n3,且n是整數(shù),當時,y的整數(shù)值有個;

④若函數(shù)圖象過點,其中a0,b0,則ab

其中真命題的序號是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸交于,兩點,與軸交于點,且.直線與拋物線交于,兩點,與軸交于點,點是拋物線的頂點,設直線上方的拋物線上的動點的橫坐標為

1)連接,求證:四邊形是平行四邊形;

2)連接,,當為何值時

3)在直線上是否存在一點,使為等腰直角三角形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,這四張紙牌背面朝上洗勻.

1)從中隨機摸出一張,求摸出的牌正面圖形是中心對稱圖形的概率;

2)小明和小亮約定做一個游戲,其規(guī)則如下:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌正面圖形都是軸對稱圖形,則小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表或畫樹狀圖的方法說明. (紙牌用表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABC是等腰直角三角形,∠B=90°,點B的坐標為(1,2).反比例函數(shù)的圖象經過點C,一次函數(shù)y=ax+b的圖象經A,C兩點.

1)求反比例函數(shù)和一次函數(shù)的關系式;

2)直接寫出不等式組0<ax+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=AC,點D是邊BC上一動點,連接AD,過點AAEAD,且AE=AD,連接CE

1)如圖,求證:BD=CE;

2)若AF平分∠DAE直線BC于點F

①如圖,當點F在線段BC上,猜想線段BD,DFFC之間的數(shù)量關系,并證明;

②若BD=6,CF=8,直接寫出AD的長.

查看答案和解析>>

同步練習冊答案