【題目】如圖,點(diǎn)A是⊙O上一點(diǎn),OA⊥AB,且OA=1,AB=,OB交⊙O于點(diǎn)D,作AC⊥OB,垂足為M,并交⊙O于點(diǎn)C,連接BC.
(1)求證:BC是⊙O的切線;
(2)過點(diǎn)B作BP⊥OB,交OA的延長(zhǎng)線于點(diǎn)P,連接PD,求sin∠BPD的值.
【答案】(1)證明見解析;(2)
【解析】
(1)連結(jié)OC,根據(jù)垂徑定理由AC⊥OB得AM=CM,于是可判斷OB為線段AC的垂直平分線,所以BA=BC,然后利用“SSS”證明△OAB≌△OCB,得到∠OAB=∠OCB,由于∠OAB=90°,則∠OCB=90°,于是可根據(jù)切線的判定定理得BC是⊙O的切線;
(2)在Rt△OAB中,根據(jù)勾股定理計(jì)算出OB=2,根據(jù)含30度的直角三角形三邊的關(guān)系得∠ABO=30°,∠AOB=60°,在Rt△PBO中,由∠BPO=30°得到PB=OB=2;在Rt△PBD中,BD=OB﹣OD=1,根據(jù)勾股定理計(jì)算出PD=,然后利用正弦的定義求sin∠BPD的值.
解:(1)連結(jié)OC,如圖,
∵AC⊥OB,
∴AM=CM,
∴OB為線段AC的垂直平分線,
∴BA=BC,
在△OAB和△OCB中
,
∴△OAB≌△OCB,
∴∠OAB=∠OCB,
∵OA⊥AB,
∴∠OAB=90°,
∴∠OCB=90°,
∴OC⊥BC,
∴BC是⊙O的切線;
(2)解:在Rt△OAB中,OA=1,AB=,
∴,
∴∠ABO=30°,∠AOB=60°,
∵PB⊥OB,
∴∠PBO=90°,
在Rt△PBO中,OB=2,∠BPO=30°,
∴PB=OB=2,
在Rt△PBD中,BD=OB﹣OD=2﹣1=1,PB=2,
∴,
∴sin∠BPD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長(zhǎng)線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級(jí)學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知.兩組發(fā)言人數(shù)的比為,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
發(fā)言次數(shù) | |
(1)求出樣本容量,并補(bǔ)全直方圖;
(2)該年級(jí)共有學(xué)生1500人,請(qǐng)估計(jì)全年級(jí)在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知組發(fā)言的學(xué)生中恰有1位男生,組發(fā)言的學(xué)生中有2位女生.現(xiàn)從組與組中分別抽一位學(xué)生寫報(bào)告,請(qǐng)用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在邊BC上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)A,過點(diǎn)A作直線AD,使∠CAD=2∠B.
(1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;
(2)若OB=4,∠CAD=60°,請(qǐng)直接寫出圖中弦AB與圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、C在平面直角坐標(biāo)系的坐標(biāo)軸上,AB=4,CB=3,點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)E、F分別是線段DA、AC上的動(dòng)點(diǎn)(點(diǎn)E不與A、D重合),且∠CEF=∠ACB,若△EFC為等腰三角形,則點(diǎn)E的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條長(zhǎng)為600m的筆直道路上均勻地跑步,速度分別為和,起跑前乙在起點(diǎn),甲在乙前面50m處,若兩人同時(shí)起跑,則從起跑出發(fā)到其中一人先到達(dá)終點(diǎn)的過程中,兩人之間的距離y(m)與時(shí)間t(s)的函數(shù)圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AB<AC,點(diǎn)D、F分別為BC、AC的中點(diǎn),E點(diǎn)在邊AC上,連接DE,過點(diǎn)B作DE的垂線交AC于點(diǎn)G,垂足為點(diǎn)H,且與四邊形ABDE的周長(zhǎng)相等,設(shè)AC=b,AB=c.
(1)求線段CE的長(zhǎng)度;
(2)求證:DF=EF;
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司研發(fā)出一款多型號(hào)的智能手表,一家代理商出售該公司的型智能手表,去年銷售總額為80000元,今年型智能手表的售價(jià)每只比去年降了600元,若今年售出的數(shù)量與去年相同的情況下,今年的銷售總額將比去年減少.
(1)求今年型智能手表每只售價(jià)多少元?
(2)今年這家代理商準(zhǔn)備新進(jìn)一批型智能手表和型智能手表共100只,它們的進(jìn)貨價(jià)與銷售價(jià)格如下表所示,若型智能手表進(jìn)貨量不超過型智能手表進(jìn)貨量的3倍,所進(jìn)智能手表可全部售完,請(qǐng)你設(shè)計(jì)出進(jìn)貨方案,使這批智能手表獲利最多,并求出最大利潤是多少元?
型智能手表 | 型智能手表 | |
進(jìn)價(jià) | 1300元/只 | 1500元/只 |
售價(jià) | 今年的售價(jià) | 2300元/只 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解同學(xué)們課外閱讀名著的情況,在八年級(jí)隨機(jī)抽查了20名學(xué)生,調(diào)查結(jié)果如表所示:
課外名著閱讀量(本) | 8 | 9 | 10 | 11 | 12 |
學(xué)生人數(shù) | 3 | 3 | 4 | 6 | 4 |
關(guān)于這20名學(xué)生課外閱讀名著的情況,下列說法錯(cuò)誤的是( )
A.中位數(shù)是10B.平均數(shù)是10.25C.眾數(shù)是11D.閱讀量不低于10本的同學(xué)點(diǎn)70%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com